Global magmatic kimberlite and carbonatite compositions (elemental and isotopic)

Tappe, Sebastian;

2022 || GFZ Data Services

Global database of isotopic and major element compositions of kimberlites and carbonatites as compiled in:

Tappe, Sebastian; Romer, Rolf L.; Stracke, Andreas; Steenfelt, Agnete; Smart, Katie A.; Muehlenbachs, Karlis; et al. (2017): Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth and Planetary Science Letters. https://doi.org/10.1016/j.epsl.2017.03.011

Originally assigned keywords

Corresponding MSL vocabulary keywords

MSL enriched keywords

Source http://dx.doi.org/10.5880/digis.e.2024.001
Source publisher GFZ Data Services
DOI 10.5880/digis.e.2024.001
Authors
Contributors
  • Romer, Rolf R.
  • Researcher
  • 0000-0002-2725-3345
  • GFZ German Research Centre for Geosciences, Potsdam., Germany;

  • Stracke, Andreas
  • Researcher
  • 0000-0002-9719-4213
  • Westfälische Wilhelms-Universität Münster, Münster, Germany;

  • Steenfelt, Agnes
  • Researcher
  • 0000-0002-6966-7773
  • Geological Survey of Denmark and Greenland, Copenhagen, Denmark;

  • Smart, Katie A.
  • Researcher
  • 0000-0003-4231-7519
  • Deep & Early Earth Processes (DEEP) Research Group, Department of Geology, University of Johannesburg, Auckland Park, South Africa;

  • Muehlenbachs, Karlis
  • Researcher
  • 0000-0003-2768-2972
  • Department of Earth and Atmospheric Sciences, University of Alberta. Alberta, Canada;

  • Tappe, Sebastian
  • ContactPerson
  • UiT The Arctic University of Norway, Tromsø, Norway;

  • DIGIS Team
  • ContactPerson
  • Göttingen University, Göttingen, Germany;
References
  • Tappe, S. (2022). Global magmatic kimberlite and carbonatite compositions (elemental and isotopic) [Data set]. GRO.data. https://doi.org/10.25625/FLV19S
  • 10.25625/FLV19S
  • IsIdenticalTo

  • Tappe, S., Romer, R. L., Stracke, A., Steenfelt, A., Smart, K. A., Muehlenbachs, K., & Torsvik, T. H. (2017). Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth and Planetary Science Letters, 466, 152–167. https://doi.org/10.1016/j.epsl.2017.03.011
  • 10.1016/j.epsl.2017.03.011
  • IsSupplementTo

  • Agashev, A. M., Pokhilenko, N. P., Takazawa, E., McDonald, J. A., Vavilov, M. A., Watanabe, T., & Sobolev, N. V. (2008). Primary melting sequence of a deep (>250 km) lithospheric mantle as recorded in the geochemistry of kimberlite–carbonatite assemblages, Snap Lake dyke system, Canada. Chemical Geology, 255(3–4), 317–328. https://doi.org/10.1016/j.chemgeo.2008.07.003
  • 10.1016/j.chemgeo.2008.07.003
  • Cites

  • Andersen, T. (1987). Mantle and crustal components in a carbonatite complex, and the evolution of carbonatite magma: Ree and isotopic evidence from the fen complex, southeast Norway. Chemical Geology: Isotope Geoscience Section, 65(2), 147–166. https://doi.org/10.1016/0168-9622(87)90070-4
  • 10.1016/0168-9622(87)90070-4
  • Cites

  • Arima, M., & Kerrien, R. (1988). Jurassic kimberlites from Picton and Varty Lake, Ontario: Geochemical and stable isotopic characteristics. Contributions to Mineralogy and Petrology, 99(3), 385–391. https://doi.org/10.1007/bf00375370
  • 10.1007/BF00375370
  • Cites

  • Batumike, J. M., Griffin, W. L., Belousova, E. A., Pearson, N. J., O’Reilly, S. Y., & Shee, S. R. (2008). LAM-ICPMS U–Pb dating of kimberlitic perovskite: Eocene–Oligocene kimberlites from the Kundelungu Plateau, D.R. Congo. Earth and Planetary Science Letters, 267(3–4), 609–619. https://doi.org/10.1016/j.epsl.2007.12.013
  • 10.1016/j.epsl.2007.12.013
  • Cites

  • Beard, A. D., Downes, H., Hegner, E., & Sablukov, S. M. (2000). Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: evidence for transitional kimberlite magma types. Lithos, 51(1–2), 47–73. https://doi.org/10.1016/s0024-4937(99)00074-2
  • 10.1016/S0024-4937(99)00074-2
  • Cites

  • Beard, A. D., Downes, H., Vetrin, V., Kempton, P. D., & Maluski, H. (1996). Petrogenesis of Devonian lamprophyre and carbonatite minor intrusions, Kandalaksha Gulf (Kola Peninsula, Russia). Lithos, 39(1–2), 93–119. https://doi.org/10.1016/s0024-4937(96)00020-5
  • 10.1016/S0024-4937(96)00020-5
  • Cites

  • BECKER, M., & ROEX, A. P. L. (2005). Geochemistry of South African On- and Off-craton, Group I and Group II Kimberlites: Petrogenesis and Source Region Evolution. Journal of Petrology, 47(4), 673–703. https://doi.org/10.1093/petrology/egi089
  • 10.1093/petrology/egi089
  • Cites

  • Bernard-Griffiths, J., Fourcade, S., & Dupuy, C. (1991). Isotopic study (Sr, Nd, O and C) of lamprophyres and associated dykes from Tamazert (Morroco): crustal contamination processes and source characteristics. Earth and Planetary Science Letters, 103(1–4), 190–199. https://doi.org/10.1016/0012-821x(91)90160-j
  • 10.1016/0012-821X(91)90160-J
  • Cites

  • Birkett, T. C., McCandless, T. E., & Hood, C. T. (2004). Petrology of the Renard igneous bodies: host rocks for diamond in the northern Otish Mountains region, Quebec. Lithos, 76(1–4), 475–490. https://doi.org/10.1016/j.lithos.2004.03.054
  • 10.1016/j.lithos.2004.03.054
  • Cites

  • Blattner, P., & Cooper, A. F. (1974). Carbon and oxygen isotopic composition of carbonatite dikes and metamorphic country rock of the Haast Schist terrain, New Zealand. Contributions to Mineralogy and Petrology, 44(1), 17–27. https://doi.org/10.1007/bf00373129
  • 10.1007/BF00373129
  • Cites

  • Carlson, R. W., Czamanske, G., Fedorenko, V., & Ilupin, I. (2006). A comparison of Siberian meimechites and kimberlites: Implications for the source of high‐Mg alkalic magmas and flood basalts. Geochemistry, Geophysics, Geosystems, 7(11). Portico. https://doi.org/10.1029/2006gc001342
  • 10.1029/2006GC001342
  • Cites

  • Chalapathi Rao, N. V., Dongre, A., Kamde, G., Srivastava, R. K., Sridhar, M., & Kaminsky, F. V. (2009). Petrology, geochemistry and genesis of newly discovered Mesoproterozoic highly magnesian, calcite-rich kimberlites from Siddanpalli, Eastern Dharwar Craton, Southern India: products of subduction-related magmatic sources? Mineralogy and Petrology, 98(1–4), 313–328. https://doi.org/10.1007/s00710-009-0085-y
  • 10.1007/s00710-009-0085-y
  • Cites

  • Chalapathi Rao, N. V., Paton, C., & Lehmann, B. (2011). Origin and diamond prospectivity of Mesoproterozoic kimberlites from the Narayanpet field, Eastern Dharwar Craton, southern India: insights from groundmass mineralogy, bulk‐chemistry and perovskite oxybarometry. Geological Journal, 47(2–3), 186–212. Portico. https://doi.org/10.1002/gj.1309
  • 10.1002/gj.1309
  • Cites

  • Rao, N. V. C., Wu, F.-Y., Mitchell, R. H., Li, Q.-L., & Lehmann, B. (2013). Mesoproterozoic U–Pb ages, trace element and Sr–Nd isotopic composition of perovskite from kimberlites of the Eastern Dharwar craton, southern India: Distinct mantle sources and a widespread 1.1Ga tectonomagmatic event. Chemical Geology, 353, 48–64. https://doi.org/10.1016/j.chemgeo.2012.04.023
  • 10.1016/j.chemgeo.2012.04.023
  • Cites

  • Coe, N., le Roex, A., Gurney, J., Pearson, D. G., & Nowell, G. (2008). Petrogenesis of the Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints from whole rock geochemistry. Contributions to Mineralogy and Petrology, 156(5), 627–652. https://doi.org/10.1007/s00410-008-0305-1
  • 10.1007/s00410-008-0305-1
  • Cites

  • Coulson, I. M., Goodenough, K. M., Pearce, N. J. G., & Leng, M. J. (2003). Carbonatites and lamprophyres of the Gardar Province – a ‘window’ to the sub-Gardar mantle? Mineralogical Magazine, 67(5), 855–872. https://doi.org/10.1180/0026461036750148
  • 10.1180/0026461036750148
  • Cites

  • DAWSON, J. B., & HAWTHORNE, J. B. (1973). Magmatic sedimentation and carbonatitic differentiation in kimberlite sills at Benfontein, South Africa. Journal of the Geological Society, 129(1), 61–85. https://doi.org/10.1144/gsjgs.129.1.0061
  • 10.1144/gsjgs.129.1.0061
  • Cites
Contact
  • DIGIS Team
  • Göttingen University, Göttingen, Germany;

  • DIGIS Team
  • Göttingen University, Göttingen, Germany;
Citation Tappe, S. (2022). Global magmatic kimberlite and carbonatite compositions (elemental and isotopic) [Data set]. GFZ Data Services. https://doi.org/10.5880/DIGIS.E.2024.001
Spatial coordinates
  • eLong 180
  • nLat 90
  • sLat -90
  • wLong -180