Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.
Data Publication
Particle image correlation data from Foamquake: a novel seismotectonic analog model mimicking the megathrust seismic cycle
Mastella, Giacomo | Corbi, Fabio | Funiciello, Francesca | Matthias, Rosenau
GFZ Data Services
(2022)
This dataset includes particle image correlation data from 26 experiments performed with Foamquake, a novel analog seismotectonic model reproducing the megathrust seismic cycle. The seismotectonic model has been monitored by the means of a high-resolution top-view monitoring camera. The dataset presented here represents the particle image velocimetry surface velocity field extracted during the experimental model through the cross-correlation between consecutive images. This dataset is supplementary to Mastella et al. (2021) where detailed descriptions of models and experimental results can be found.
Keywords
Originally assigned keywords
Corresponding MSL vocabulary keywords
MSL enriched keywords
MSL enriched sub domains i
Source publisher
GFZ Data Services
DOI
10.5880/fidgeo.2021.046
Authors
Mastella, Giacomo
0000-0002-9052-4873
Universitá degli studi "Roma TRE", Rome, Italy
Corbi, Fabio
0000-0003-2662-3065
Istituto di Geologia Ambientale e Geoingegneria – CNR, Rome, Italy
Funiciello, Francesca
0000-0001-7900-8272
Universitá degli studi "Roma TRE", Rome, Italy
Matthias, Rosenau
0000-0003-1134-5381
GFZ German Research Centre for Geosciences, Potsdam, Germany
References
10.1029/2021JB022789RR
IsSupplementTo
Corbi, F., Sandri, L., Bedford, J., Funiciello, F., Brizzi, S., Rosenau, M., & Lallemand, S. (2019). Machine Learning Can Predict the Timing and Size of Analog Earthquakes. Geophysical Research Letters, 46(3), 1303–1311. Portico. https://doi.org/10.1029/2018gl081251
10.1029/2018GL081251
Cites
Corbi, F., Bedford, J., Sandri, L., Funiciello, F., Gualandi, A., & Rosenau, M. (2020). Predicting Imminence of Analog Megathrust Earthquakes With Machine Learning: Implications for Monitoring Subduction Zones. Geophysical Research Letters, 47(7). Portico. https://doi.org/10.1029/2019gl086615
10.1029/2019GL086615
Cites
Kosari, E., Rosenau, M., Bedford, J., Rudolf, M., & Oncken, O. (2020). On the Relationship Between Offshore Geodetic Coverage and Slip Model Uncertainty: Analog Megathrust Earthquake Case Studies. Geophysical Research Letters, 47(15). Portico. https://doi.org/10.1029/2020gl088266
10.1029/2020GL088266
Cites
Rosenau, M., Horenko, I., Corbi, F., Rudolf, M., Kornhuber, R., & Oncken, O. (2019). Synchronization of Great Subduction Megathrust Earthquakes: Insights From Scale Model Analysis. Journal of Geophysical Research: Solid Earth, 124(4), 3646–3661. Portico. https://doi.org/10.1029/2018jb016597
10.1029/2018JB016597
Cites
Cites
Mastella, G., Corbi, F., Funiciello, F., Rosenau, M., Rudolf, M., & Kosari, E. (2021). <i>Properties of rock analogue materials used for Foamquake: a novel seismotectonic analog model mimicking the megathrust seismic cycle at RomaTre University (Italy)</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2021.047
10.5880/fidgeo.2021.047
HasPart
Contact
Mastella Giacomo
giacomo.mastella@uniroma3.it
Universitá degli studi "Roma TRE", Rome, Italy
Citiation
Mastella, G., Corbi, F., Funiciello, F., & Matthias, R. (2021). Particle image correlation data from Foamquake: a novel seismotectonic analog model mimicking the megathrust seismic cycle [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2021.046