Host Rock Variability Powers the Diversity of Steam-Driven Eruptions

Montanaro, Cristian; Cronin, Shane J.; Scheu , Bettina Scheu; Kennedy, Ben; Scott, Bradley J.; Dingwell, Donald B.;

2020-11 || GFZ Data Services

Steam-driven eruptions are explosions that frequently occur in volcanic and geothermal areas. They are powered by the sudden release and expansion of steam and liquid water trapped under high pressure within the pore spaces of host rocks. We have experimentally studied how the strength of rock hosting steam and liquid controls the nature of explosions based on examples from Lake Okaro (New Zealand). Specifically, we used experiments to estimate the relative amounts of energy that goes into breaking rock up, versus that required for ejecting particles upwards and outwards. Here we report the main methodological approach and results of petrophysical properties analyses, decompression experiments and estimation of explosivity of water, respectively.

Originally assigned keywords

Corresponding MSL vocabulary keywords

MSL enriched keywords

Originally assigned sub domains
  • rock and melt physics
MSL enriched sub domains
  • rock and melt physics
  • analogue modelling of geologic processes
  • microscopy and tomography
  • paleomagnetism
Source http://doi.org/10.5880/fidgeo.2020.046
Source publisher GFZ Data Services
DOI 10.5880/fidgeo.2020.046
License CC BY 4.0
Authors
  • Montanaro, Cristian
  • 0000-0002-7896-3419
  • Ludwig-Maximilians-University Munich, Munich, Germany

  • Scheu , Bettina Scheu
  • 0000-0002-0478-1049
  • Ludwig-Maximilians-University Munich, Munich, Germany

  • Dingwell, Donald B.
  • 0000-0002-3332-789X
  • Ludwig-Maximilians-University Munich, Munich, Germany
References
  • Alatorre-Ibargüengoitia, M. A., Scheu, B., Dingwell, D. B., Delgado-Granados, H., & Taddeucci, J. (2010). Energy consumption by magmatic fragmentation and pyroclast ejection during Vulcanian eruptions. Earth and Planetary Science Letters, 291(1–4), 60–69. https://doi.org/10.1016/j.epsl.2009.12.051
  • 10.1016/j.epsl.2009.12.051
  • Cites

  • Koyaguchi, T., Scheu, B., Mitani, N. K., & Melnik, O. (2008). A fragmentation criterion for highly viscous bubbly magmas estimated from shock tube experiments. Journal of Volcanology and Geothermal Research, 178(1), 58–71. https://doi.org/10.1016/j.jvolgeores.2008.02.008
  • 10.1016/j.jvolgeores.2008.02.008
  • Cites

  • Mastin, L. G. (1995). Thermodynamics of gas and steam-blast eruptions. Bulletin of Volcanology, 57(2), 85–98. https://doi.org/10.1007/bf00301399
  • 10.1007/BF00301399
  • Cites

  • Mayer, K., Scheu, B., Gilg, H. A., Heap, M. J., Kennedy, B. M., Lavallée, Y., Letham-Brake, M., & Dingwell, D. B. (2015). Experimental constraints on phreatic eruption processes at Whakaari (White Island volcano). Journal of Volcanology and Geothermal Research, 302, 150–162. https://doi.org/10.1016/j.jvolgeores.2015.06.014
  • 10.1016/j.jvolgeores.2015.06.014
  • Cites

  • Montanaro, C., Scheu, B., Mayer, K., Orsi, G., Moretti, R., Isaia, R., & Dingwell, D. B. (2016). Experimental investigations on the explosivity of steam‐driven eruptions: A case study of Solfatara volcano (Campi Flegrei). Journal of Geophysical Research: Solid Earth, 121(11), 7996–8014. Portico. https://doi.org/10.1002/2016jb013273
  • 10.1002/2016JB013273
  • Cites

  • Planas-Cuchi, E., Salla, J. M., & Casal, J. (2004). Calculating overpressure from BLEVE explosions. Journal of Loss Prevention in the Process Industries, 17(6), 431–436. https://doi.org/10.1016/j.jlp.2004.08.002
  • 10.1016/j.jlp.2004.08.002
  • Cites

  • Prugh, R. W. (1991). Quantitative Evaluation of “Bleve” Hazards. Journal of Fire Protection Engineering, 3(1), 9–24. https://doi.org/10.1177/104239159100300102
  • 10.1177/104239159100300102
  • Cites

  • Rager, A. H., Smith, E. I., Scheu, B., & Dingwell, D. B. (2014). The effects of water vaporization on rock fragmentation during rapid decompression: Implications for the formation of fluidized ejecta on Mars. Earth and Planetary Science Letters, 385, 68–78. https://doi.org/10.1016/j.epsl.2013.10.029
  • 10.1016/j.epsl.2013.10.029
  • Cites

  • Scheu, B., Spieler, O., & Dingwell, D. B. (2006). Dynamics of explosive volcanism at Unzen volcano: an experimental contribution. Bulletin of Volcanology, 69(2), 175–187. https://doi.org/10.1007/s00445-006-0066-5
  • 10.1007/s00445-006-0066-5
  • Cites

  • Scheu, B., Kueppers, U., Mueller, S., Spieler, O., & Dingwell, D. B. (2008). Experimental volcanology on eruptive products of Unzen volcano. Journal of Volcanology and Geothermal Research, 175(1–2), 110–119. https://doi.org/10.1016/j.jvolgeores.2008.03.023
  • 10.1016/j.jvolgeores.2008.03.023
  • Cites

  • Thiéry, R., & Mercury, L. (2009). Explosive properties of water in volcanic and hydrothermal systems. Journal of Geophysical Research: Solid Earth, 114(B5). Portico. https://doi.org/10.1029/2008jb005742
  • 10.1029/2008JB005742
  • Cites

  • Montanaro, C., Cronin, S. J., Scheu, B., Kennedy, B., Scott, B. J., & Dingwell, D. B. (2021). Host Rock Variability Powers the Diversity of Steam‐Driven Eruptions. Geophysical Research Letters, 48(1). Portico. https://doi.org/10.1029/2020gl089025
  • 10.1029/2020GL089025
  • IsSupplementTo
Contact
  • Montanaro, Cristian
  • Ludwig-Maximilians-University Munich, Munich, Germany
  • cristian.montanaro@min.uni-muenchen.de
Citation Montanaro, C., Cronin, S. J., Scheu , B. S., Kennedy, B., Scott, B. J., & Dingwell, D. B. (2020). Host Rock Variability Powers the Diversity of Steam-Driven Eruptions [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2020.046
Spatial coordinates
  • eLong 176.394
  • nLat -38.2944
  • sLat -38.3038
  • wLong 176.394