Geochemical and geochronological data from the LeMay Group, Antarctic Peninsula

Riley, Teal;

2022 || British Geological Survey - National Geoscience Data Centre (UKRI/NERC)


The files include full analytical details and datasets from the laboratories used for the acquisition of U-Pb zircon geochronology, Lu-Hf isotope geochemistry and 40Ar/39Ar analysis of detrital white mica. Also included are a list of all the published datasets used in the construction of the MDS and ridge plots for detailed regional comparisons. The data were collected in the interval January 2021 to March 2022 across a number of laboratories: Stockholm, University College London, British Geological Survey, Trinity College Dublin, Australian National University (U-Pb zircon geochronology); Open University (40Ar/39Ar analysis) and British Geological Survey (Lu-Hf isotopes). The analyses were conducted by Teal Riley (Stockholm, British Geological Survey), Ian Millar (Australian National University), Andrew Carter (University College London), Joaquin Bastias (Trinity College Dublin), Craig Storey (Open University). The analyses were conducted to examine the provenance and depositional history of the accretionary LeMay Group complex of Alexander Island.

Originally assigned keywords

Corresponding MSL vocabulary keywords

MSL enriched keywords

MSL enriched sub domains
  • geochemistry
Source http://dx.doi.org/10.5285/c0c56e6d-d13b-4480-bbd3-cd613ab57b33
Source publisher British Geological Survey - National Geoscience Data Centre (UKRI/NERC)
DOI 10.5285/c0c56e6d-d13b-4480-bbd3-cd613ab57b33
Authors
Contributors
  • DataManager
  • Natural Environment Research Council;

  • Distributor
  • Natural Environment Research Council;

  • HostingInstitution
  • Natural Environment Research Council;
References
  • Boekhout, F., Spikings, R., Sempere, T., Chiaradia, M., Ulianov, A., & Schaltegger, U. (2012). Mesozoic arc magmatism along the southern Peruvian margin during Gondwana breakup and dispersal. Lithos, 146–147, 48–64. https://doi.org/10.1016/j.lithos.2012.04.015
  • 10.1016/j.lithos.2012.04.015
  • References

  • Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273(1–2), 48–57. https://doi.org/10.1016/j.epsl.2008.06.010
  • 10.1016/j.epsl.2008.06.010
  • References

  • Corfu, F., & Ayres, L. D. (1984). U-Pb age and genetic significance of heterogeneous zircon populations in rocks from the Favourable Lake area, Northwestern Ontario. Contributions to Mineralogy and Petrology, 88(1–2), 86–101. https://doi.org/10.1007/bf00371414
  • 10.1007/BF00371414
  • References

  • Corfu, F., & Noble, S. R. (1992). Genesis of the southern Abitibi greenstone belt, Superior Province, Canada: Evidence from zircon Hf isotope analyses using a single filament technique. Geochimica et Cosmochimica Acta, 56(5), 2081–2097. https://doi.org/10.1016/0016-7037(92)90331-c
  • 10.1016/0016-7037(92)90331-C
  • References

  • Jeon, H., & Whitehouse, M. J. (2015). A Critical Evaluation of U–Pb Calibration Schemes Used in SIMS Zircon Geochronology. Geostandards and Geoanalytical Research, 39(4), 443–452. Portico. https://doi.org/10.1111/j.1751-908x.2014.00325.x
  • 10.1111/j.1751-908X.2014.00325.x
  • References

  • Nowell, G., & Parrish, R. R. (2007). Simultaneous acquisition of isotope compositions and parent/daughter ratios by non-isotope dilution-mode plasma ionisation muti-colector mass spectrometry (PIMMS). Special Publications, 298–310. https://doi.org/10.1039/9781847551696-00298
  • 10.1039/9781847551696-00298
  • References

  • Paces, J. B., & Miller, J. D. (1993). Precise U‐Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. Journal of Geophysical Research: Solid Earth, 98(B8), 13997–14013. Portico. https://doi.org/10.1029/93jb01159
  • 10.1029/93JB01159
  • References

  • Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508. https://doi.org/10.1039/c1ja10172b
  • 10.1039/c1ja10172b
  • References

  • Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L., & DePaolo, D. J. (1998). Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145(1–2), 117–152. https://doi.org/10.1016/s0009-2541(97)00159-9
  • 10.1016/S0009-2541(97)00159-9
  • References

  • Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., & Whitehouse, M. J. (2008). Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
  • 10.1016/j.chemgeo.2007.11.005
  • References

  • Söderlund, U., Patchett, P. J., Vervoort, J. D., & Isachsen, C. E. (2004). The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3–4), 311–324. https://doi.org/10.1016/s0012-821x(04)00012-3
  • 10.1016/S0012-821X(04)00012-3
  • References

  • Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2), 207–221. https://doi.org/10.1016/0012-821x(75)90088-6
  • 10.1016/0012-821X(75)90088-6
  • References

  • Ulianov, A., Müntener, O., Schaltegger, U., & Bussy, F. (2012). The data treatment dependent variability of U–Pb zircon ages obtained using mono-collector, sector field, laser ablation ICPMS. Journal of Analytical Atomic Spectrometry, 27(4), 663. https://doi.org/10.1039/c2ja10358c
  • 10.1039/C2JA10358C
  • References

  • Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
  • 10.1016/j.gsf.2018.04.001
  • References

  • WHITEHOUSE, M. J. (2004). Assigning Dates to Thin Gneissic Veins in High-Grade Metamorphic Terranes: A Cautionary Tale from Akilia, Southwest Greenland. Journal of Petrology, 46(2), 291–318. https://doi.org/10.1093/petrology/egh075
  • 10.1093/petrology/egh075
  • References

  • WIEDENBECK, M., ALLÉ, P., CORFU, F., GRIFFIN, W. L., MEIER, M., OBERLI, F., QUADT, A. V., RODDICK, J. C., & SPIEGEL, W. (1995). THREE NATURAL ZIRCON STANDARDS FOR U‐TH‐PB, LU‐HF, TRACE ELEMENT AND REE ANALYSES. Geostandards Newsletter, 19(1), 1–23. Portico. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x
  • 10.1111/j.1751-908X.1995.tb00147.x
  • References

  • Woodhead, J. D., & Hergt, J. M. (2005). A Preliminary Appraisal of Seven Natural Zircon Reference Materials for In Situ Hf Isotope Determination. Geostandards and Geoanalytical Research, 29(2), 183–195. Portico. https://doi.org/10.1111/j.1751-908x.2005.tb00891.x
  • 10.1111/j.1751-908X.2005.tb00891.x
  • References
Contact
  • UK Polar Data Centre
  • Natural Environment Research Council;
Citation Riley, T. (2022). Geochemical and geochronological data from the LeMay Group, Antarctic Peninsula (Version 1.0) [Data set]. NERC EDS UK Polar Data Centre. https://doi.org/10.5285/C0C56E6D-D13B-4480-BBD3-CD613AB57B33
Collection period(s)
  • 2021-01-01 - 2022-03-01
Geo location(s)
  • Alexander Island Antarctica
Spatial coordinates
  • eLong -71.575
  • nLat -68.783
  • sLat -69.55
  • wLong -75.4