U-Pb data from cherts (Onverwacht Group) and strain data from conglomerates (Moodies Group) from the southern margin of the Archean Barberton Greenstone Belt, Eswatini

Heubeck, Christoph; Thomsen, Tonny B.; Heredia, Benjamin D.; Zeh, Armin; Balling, Philipp;

2022 || GFZ Data Services

The southern margin of the Barberton Greenstone Belt in Eswatini limits one of the world’s oldest well-preserved sedimentary and volcanic sequences, 3.57 to 3.2 Ga old. In a segment along that margin, older mafic and ultramafic volcanic rocks were thrust over the youngest strata (quartz-rich sandstones and conglomerates) before being folded and imbricated in thrust slices. Samples described in this publication comprise tabular data of (1) sample locations and crystallization ages of zircons which were extracted from thin tuffaceous units in the thrust sheet, (2) analytical data from laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS), supporting these ages, and (3) quantitative measurements of ductily deformed conglomerate clasts. Field data were collected 2012-2019; U-Pb analyses performed in 2020. The data presented here are the basis for geological maps and cross sections, and are visualized as concordia diagrams form part of in the related publication (Heubeck et al.. 2023).

Originally assigned keywords

Corresponding MSL vocabulary keywords

MSL enriched keywords

MSL enriched sub domains
  • geochemistry
  • rock and melt physics
  • analogue modelling of geologic processes
Source http://dx.doi.org/10.5880/fidgeo.2022.037
Source publisher GFZ Data Services
DOI 10.5880/fidgeo.2022.037
Authors
  • Heubeck, Christoph
  • 0000-0002-2632-2644
  • Friedrich-Schiller-Universität Jena, Department of Geosciences, Jena, Germany;

  • Thomsen, Tonny B.
  • 0000-0002-6233-7974
  • The Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark;

  • Heredia, Benjamin D.
  • 0000-0002-4625-2321
  • The Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark;

  • Zeh, Armin
  • 0000-0001-5599-7897
  • KIT - Karlsruher Institut für Technologie, Institut für Angewandte Geowissenschaften, Karlsruhe, Germany;

  • Balling, Philipp
  • 0000-0002-8439-6369
  • Friedrich-Schiller-Universität Jena, Department of Geosciences, Jena, Germany;
Contributors
  • Heubeck, Christoph
  • ContactPerson
  • Friedrich-Schiller-Universität Jena, Department of Geosciences, Jena, Germany;
References
  • Black, L. P., Kamo, S. L., Allen, C. M., Davis, D. W., Aleinikoff, J. N., Valley, J. W., Mundil, R., Campbell, I. H., Korsch, R. J., Williams, I. S., & Foudoulis, C. (2004). Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1–2), 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003
  • 10.1016/j.chemgeo.2004.01.003
  • Cites

  • GERDES, A., & ZEH, A. (2006). Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters, 249(1–2), 47–61. https://doi.org/10.1016/j.epsl.2006.06.039
  • 10.1016/j.epsl.2006.06.039
  • Cites

  • Gerdes, A., & Zeh, A. (2009). Zircon formation versus zircon alteration — New insights from combined U–Pb and Lu–Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology, 261(3–4), 230–243. https://doi.org/10.1016/j.chemgeo.2008.03.005
  • 10.1016/j.chemgeo.2008.03.005
  • Cites

  • Hiess, J., Condon, D. J., McLean, N., & Noble, S. R. (2012). 238 U/ 235 U Systematics in Terrestrial Uranium-Bearing Minerals. Science, 335(6076), 1610–1614. https://doi.org/10.1126/science.1215507
  • 10.1126/science.1215507
  • Cites

  • Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211(1–2), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
  • 10.1016/j.chemgeo.2004.06.017
  • Cites

  • Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., & Maas, R. (2010). Improved laser ablation U‐Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11(3). Portico. https://doi.org/10.1029/2009gc002618
  • 10.1029/2009GC002618
  • Cites

  • Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508. https://doi.org/10.1039/c1ja10172b
  • 10.1039/C1JA10172B
  • Cites

  • Petrus, J. A., & Kamber, B. S. (2012). VizualAge: A Novel Approach to Laser Ablation ICP‐MS U‐Pb Geochronology Data Reduction. Geostandards and Geoanalytical Research, 36(3), 247–270. Portico. https://doi.org/10.1111/j.1751-908x.2012.00158.x
  • 10.1111/j.1751-908X.2012.00158.x
  • Cites

  • Santos, M. M., Lana, C., Scholz, R., Buick, I., Schmitz, M. D., Kamo, S. L., Gerdes, A., Corfu, F., Tapster, S., Lancaster, P., Storey, C. D., Basei, M. A. S., Tohver, E., Alkmim, A., Nalini, H., Krambrock, K., Fantini, C., & Wiedenbeck, M. (2017). A New Appraisal of Sri Lankan BB Zircon as a Reference Material for LA‐ICP‐MS U‐Pb Geochronology and Lu‐Hf Isotope Tracing. Geostandards and Geoanalytical Research, 41(3), 335–358. Portico. https://doi.org/10.1111/ggr.12167
  • 10.1111/ggr.12167
  • Cites

  • Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., & Whitehouse, M. J. (2008). Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
  • 10.1016/j.chemgeo.2007.11.005
  • Cites

  • Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2), 207–221. https://doi.org/10.1016/0012-821x(75)90088-6
  • 10.1016/0012-821X(75)90088-6
  • Cites

  • Vermeesch, P. (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9(5), 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
  • 10.1016/j.gsf.2018.04.001
  • Cites

  • Vermeesch, P. (2021). On the treatment of discordant detrital zircon U–Pb data. Geochronology, 3(1), 247–257. https://doi.org/10.5194/gchron-3-247-2021
  • 10.5194/gchron-3-247-2021
  • Cites

  • WIEDENBECK, M., ALLÉ, P., CORFU, F., GRIFFIN, W. L., MEIER, M., OBERLI, F., QUADT, A. V., RODDICK, J. C., & SPIEGEL, W. (1995). THREE NATURAL ZIRCON STANDARDS FOR U‐TH‐PB, LU‐HF, TRACE ELEMENT AND REE ANALYSES. Geostandards Newsletter, 19(1), 1–23. Portico. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x
  • 10.1111/j.1751-908X.1995.tb00147.x
  • Cites

  • Wiedenbeck, M., Hanchar, J. M., Peck, W. H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J. ‐P., Greenwood, R. C., Hinton, R., Kita, N., Mason, P. R. D., Norman, M., Ogasawara, M., Piccoli, P. M., … Zheng, Y. ‐F. (2004). Further Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research, 28(1), 9–39. Portico. https://doi.org/10.1111/j.1751-908x.2004.tb01041.x
  • 10.1111/j.1751-908X.2004.tb01041.x
  • Cites
Contact
  • Heubeck, Christoph
  • Friedrich-Schiller-Universität Jena, Department of Geosciences, Jena, Germany;
Citation Heubeck, C., Thomsen, T. B., Heredia, B. D., Zeh, A., & Balling, P. (2022). U-Pb data from cherts (Onverwacht Group) and strain data from conglomerates (Moodies Group) from the southern margin of the Archean Barberton Greenstone Belt, Eswatini [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2022.037
Geo location(s)
  • Malolotsha Syncline at the southern margin of theBarberton Greenstone Belt in Eswatini Swaziland)
Spatial coordinates
  • eLong 31.1116
  • nLat -26.0686
  • sLat -26.1897
  • wLong 31.0395