GlobaLID – Global Lead Isotope Database (Version 12/2023)

Westner, Katrin J.; Rose, Thomas; Klein, Sabine; Hsu, Yiu-Kang; Becerra, María Florencia; Nezafati, Nima; Renson, Virginie; Stephens, Jay;

2023 || GFZ Data Services

This dataset is a continuously growing collection of lead isotope reference data. Lead isotopes are an
established method to reconstruct the raw material provenance of archaeological objects. They are
typically applied to artefacts made of copper, lead, silver, and their alloys. However, also the raw ma-
terial provenance of other materials such as glass, pigments and pottery was already investigated us-
ing lead isotopes.

To successfully reconstruct the origin of the raw material, lead isotope signatures from as many as
possible suitable raw material occurrences must be known. In the past, large-scaled research projects
were carried out to characterise ore deposits especially in the Mediterranean area and Western Eu-
rope. However, many of these data are dispersed in the literature and were published in scientific
articles or monographs. Consequently, each researcher or at least each research group had to build
their own up-to-date database of reference data from the literature. To overcome these restrictions,
to facilitate work with lead isotope reference data and particularly to make the data FAIR, i.e., finda-
ble, accessible, interoperable and reusable (Wilkinson et al. 2016), these published data are compiled
and transferred into a uniform layout. They are further enhanced with additional metadata to facili-
tate their use in raw material provenance studies.

Currently, the database is restricted to ores and minerals as these are the most relevant materials for
provenance studies of ancient metals. Future updates will include hitherto uncovered regions but
also additional data from countries already present. Slag and other metallurgical (by-) products from
ancient sites in close vicinity to ore deposits generally are a genuine representation of the ores uti-
lised in historic times. As such, they are highly relevant for provenance studies and an extension to
these materials is therefore planned.

GlobaLID is a representation of the collective work of researchers on Pb isotope studies. As such, the
database is seen as a community engagement project that invites scientists all over the world to be-
come active contributors of GlobaLID. The initiators of the database dedicate their effort to the con-
tinuation and maintenance of the database but only the support of the whole community will allow a
rapid and successful growth of GlobaLID.

Originally assigned keywords

Corresponding MSL vocabulary keywords

MSL enriched keywords

MSL enriched sub domains
  • geochemistry
Source http://dx.doi.org/10.5880/fidgeo.2023.043
Source publisher GFZ Data Services
DOI 10.5880/fidgeo.2023.043
Authors
  • Westner, Katrin J.
  • 0000-0001-5529-1165
  • Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany;

  • Rose, Thomas
  • 0000-0002-8186-3566
  • Goethe-Universität Frankfurt, Institut für Geowissenschaften, Frankfurt, Germany;

  • Klein, Sabine
  • 0000-0002-3939-4428
  • Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany; FIERCE, Frankfurt Isotope &Element Research Center, Goethe Universität, Frankfurt am Main, Germany; Institut für Archäologische Wissenschaften, Ruhr-Universität Bochum, Bochum, Germany;

  • Hsu, Yiu-Kang
  • 0000-0002-2439-4863
  • Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany;

  • Becerra, María Florencia
  • CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) - División Arqueología, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina;

  • Nezafati, Nima
  • 0000-0002-5806-343X
  • Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany;

  • Renson, Virginie
  • Archaeometry Laboratory, Research Reactor Center, University of Missouri, Columbia, MO, USA;

  • Stephens, Jay
  • Archaeometry Laboratory, Research Reactor Center, University of Missouri, Columbia, MO, USA; School of Anthropology, University of Arizona, Tucson, AZ, USA;
Contributors
  • Klein, Sabine
  • ProjectLeader
  • 0000-0002-3939-4428
  • Forschungsbereich Archäometallurgie, Deutsches Bergbau-Museum Bochum, Bochum, Germany; FIERCE, Frankfurt Isotope &Element Research Center, Goethe Universität, Frankfurt am Main, Germany; Institut für Archäologische Wissenschaften, Ruhr-Universität Bochum, Bochum, Germany;

  • GlobaLID Core Team
  • ContactPerson
  • Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;

  • Fischer-Lechner, Sabine
  • DataCollector
  • Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;

  • Killick, David
  • DataCollector
  • School of Anthropology, University of Arizona, Tucson, AZ, USA;

  • Pryce, T. O.
  • DataCollector
  • Centre National de la Recherche Scientifique, UMR 7065 Institut de Recherche sur les ArchéoMATériaux, Université Paris-Saclay & CEA/CNRS UMR 3685 NIMBE, 91191 Gif-sur-Yvette, France;

  • GlobaLID Core Team
  • ContactPerson
  • Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;
References
  • Cites

  • ALBARÈDE, F., DESAULTY, A. ‐M., & BLICHERT‐TOFT, J. (2011). A GEOLOGICAL PERSPECTIVE ON THE USE OF Pb ISOTOPES IN ARCHAEOMETRY. Archaeometry, 54(5), 853–867. Portico. https://doi.org/10.1111/j.1475-4754.2011.00653.x
  • 10.1111/j.1475-4754.2011.00653.x
  • Cites

  • Albarede, F., & Martine, J. (1984). Unscrambling the lead model ages. Geochimica et Cosmochimica Acta, 48(1), 207–212. https://doi.org/10.1016/0016-7037(84)90364-8
  • 10.1016/0016-7037(84)90364-8
  • Cites

  • Cumming, G. L., & Richards, J. R. (1975). Ore lead isotope ratios in a continuously changing earth. Earth and Planetary Science Letters, 28(2), 155–171. https://doi.org/10.1016/0012-821x(75)90223-x
  • 10.1016/0012-821X(75)90223-X
  • Cites

  • Galer, S. J. G. (1998). Practical Application of Lead Triple Spiking for Correction of Instrumental Mass Discrimination. Mineralogical Magazine, 62A(1), 491–492. https://doi.org/10.1180/minmag.1998.62a.1.260
  • 10.1180/minmag.1998.62a.1.260
  • Cites

  • Goldmann, A., Brennecka, G., Noordmann, J., Weyer, S., & Wadhwa, M. (2015). The uranium isotopic composition of the Earth and the Solar System. Geochimica et Cosmochimica Acta, 148, 145–158. https://doi.org/10.1016/j.gca.2014.09.008
  • 10.1016/j.gca.2014.09.008
  • Cites

  • Haest, M., Schneider, J., Cloquet, C., Latruwe, K., Vanhaecke, F., & Muchez, P. (2010). Pb isotopic constraints on the formation of the Dikulushi Cu–Pb–Zn–Ag mineralisation, Kundelungu Plateau (Democratic Republic of Congo). Mineralium Deposita, 45(4), 393–410. https://doi.org/10.1007/s00126-010-0279-6
  • 10.1007/s00126-010-0279-6
  • Cites

  • McFarlane, C., Soltani Dehnavi, A., & Lentz, D. (2016). Pb-Isotopic Study of Galena by LA-Q-ICP-MS: Testing a New Methodology with Applications to Base-Metal Sulphide Deposits. Minerals, 6(3), 96. https://doi.org/10.3390/min6030096
  • 10.3390/min6030096
  • Cites

  • Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2), 207–221. https://doi.org/10.1016/0012-821x(75)90088-6
  • 10.1016/0012-821X(75)90088-6
  • Cites

  • White, W. M., Albarède, F., & Télouk, P. (2000). High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chemical Geology, 167(3–4), 257–270. https://doi.org/10.1016/s0009-2541(99)00182-5
  • 10.1016/S0009-2541(99)00182-5
  • Cites

  • Asael, D., Matthews, A., Bar-Matthews, M., Harlavan, Y., & Segal, I. (2012). Tracking redox controls and sources of sedimentary mineralization using copper and lead isotopes. Chemical Geology, 310–311, 23–35. https://doi.org/10.1016/j.chemgeo.2012.03.021
  • 10.1016/j.chemgeo.2012.03.021
  • IsDerivedFrom

  • BARNES, I. L., SHIELDS, W. R., MURPHY, T. J., & BRILL, R. H. (1974). Isotopic Analysis of Laurion Lead Ores. Archaeological Chemistry, 1–10. https://doi.org/10.1021/ba-1974-0138.ch001
  • 10.1021/ba-1974-0138.ch001
  • IsDerivedFrom

  • Baron, S., Tămaş, C. G., Cauuet, B., & Munoz, M. (2011). Lead isotope analyses of gold–silver ores from Roşia Montană (Romania): a first step of a metal provenance study of Roman mining activity in Alburnus Maior (Roman Dacia). Journal of Archaeological Science, 38(5), 1090–1100. https://doi.org/10.1016/j.jas.2010.12.004
  • 10.1016/j.jas.2010.12.004
  • IsDerivedFrom

  • Barton, J. M., Blaine, J. L., Doig, R., & Byron, C. L. (1994). The geological setting and style of copper mineralization at the Bushman group of deposits, northeastern Botswana. Journal of African Earth Sciences, 18(2), 87–97. https://doi.org/10.1016/0899-5362(94)90022-1
  • 10.1016/0899-5362(94)90022-1
  • IsDerivedFrom

  • Begemann, F., Hauptmann, A., Schmitt‐Strecker, S., & Weisgerber, G. (2010). Lead isotope and chemical signature of copper from Oman and its occurrence in Mesopotamia and sites on the Arabian Gulf coast. Arabian Archaeology and Epigraphy, 21(2), 135–169. Portico. https://doi.org/10.1111/j.1600-0471.2010.00327.x
  • 10.1111/j.1600-0471.2010.00327.x
  • IsDerivedFrom

  • Begemann, F., Schmitt-Strecker, S., Pernicka, E., & Schiavo, F. L. (2001). Chemical composition and lead isotopy of copper and bronze from Nuragic Sardinia. European Journal of Archaeology, 4(1), 43–85. https://doi.org/10.1179/eja.2001.4.1.43
  • 10.1179/eja.2001.4.1.43
  • IsDerivedFrom

  • BEGEMANN, F., & SCHMITT-STRECKER, S. (2009). Über das frühe Kupfer Mesopotamiens [JB]. Iranica Antiqua, 0, 1–45. https://doi.org/10.2143/IA.44.0.2034374
  • 10.2143/IA.44.0.2034374
  • IsDerivedFrom

  • Bird, G., Brewer, P. A., Macklin, M. G., Nikolova, M., Kotsev, T., Mollov, M., & Swain, C. (2010). Pb isotope evidence for contaminant-metal dispersal in an international river system: The lower Danube catchment, Eastern Europe. Applied Geochemistry, 25(7), 1070–1084. https://doi.org/10.1016/j.apgeochem.2010.04.012
  • 10.1016/j.apgeochem.2010.04.012
  • IsDerivedFrom

  • Bolhar, R., Whitehouse, M. J., Milani, L., Magalhães, N., Golding, S. D., Bybee, G., LeBras, L., & Bekker, A. (2020). Atmospheric S and lithospheric Pb in sulphides from the 2.06 Ga Phalaborwa phoscorite-carbonatite Complex, South Africa. Earth and Planetary Science Letters, 530, 115939. https://doi.org/10.1016/j.epsl.2019.115939
  • 10.1016/j.epsl.2019.115939
  • IsDerivedFrom
Contact
  • GlobaLID Core Team
  • Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;

  • GlobaLID Core Team
  • Forschungsbereich Archäometallurgie, Leibniz-Forschungsmuseum für Georessourcen/Deutsches Bergbau-Museum Bochum, Germany;
Citation Westner, K. J., Rose, T., Klein, S., Hsu, Y.-K., Becerra, M. F., Nezafati, N., Renson, V., & Stephens, J. (2023). GlobaLID – Global Lead Isotope Database (Version 12/2023) (Version 1.1) [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2023.043
Spatial coordinates
  • eLong 180
  • nLat 90
  • sLat -90
  • wLong -180