Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Accessory Minerals in Felsic Igneous Rocks - Part 4: Composition of allanite-(Ce), monazite-(Ce), xenotime-(Y) and zircon from the multi-stage, weakly peraluminous F-poor granite massifs of Kirchberg and Niederbobritzsch (Erzgebirge−Vogtland metallogenic province, Germany)

Förster, Hans-Jürgen

GFZ Data Services

(2019)

This data set is the 4th contribution of a series reporting chemical data for accessory minerals from felsic igneous rocks. It deals with two late Variscan biotite-granite massifs emplaced in the Saxothuringian Zone of the Variscan Orogen (Erzgebirge−Vogtland metallogenic province) in Germany. Mineral compositions were measured by electron-microprobe on surface rocks and borehole samples. The data set assembles the results of electron-microprobe spot analyses of primary and secondary allanite-(Ce), monazite-(Ce), xenotime-(Y) and zircon from the multi-phase biotite-granite plutons of Kirchberg (KIB, Western Erzgebirge) and Niederbobritzsch (NBZ, Eastern Erzgebirge). Both plutons comprise several, compositionally and texturally distinct sub-intrusions, contain locally centimeter- to decimeter-sized co-genetic enclaves and xenoliths, and are cross-cut by chemically distinct, fine-grained aplitic dikes. These late-Variscan (c. 325 Ma) granites are moderately to highly evolved and (not considering enclaves) span the SiO2-range (in wt%) 67.0-77.4 (KIB) and 66.8-76.2 (NBZ). The granites are weakly peraluminous (A/CNK = 1.04−1.11 for KIB and 0.99-1.10 for NBZ) and of transitional I−S-type affinity. Formation of primary allanite-(Ce) was restricted to the least-evolved subintrusions KIB1 and NBZ1 of both massifs. All other granites contain monazite-(Ce) as predominant LREE host. Magmatic allanite-(Ce) is variably altered and characterized by totals <100 wt%, implying the presence of several wt% water in the structure. Synchysite-(Ce) constitutes one of its alteration minerals. The Kirchberg massif hosts a second sub-facies of KIB1 that contains monazite instead of allanite as primary species. Severe alteration of this granite facies gave rise to partial or complete dissolution of part of the monazite accompanied by formation of allanite-epidote solid solutions as alteration product. Monazite-(Ce) displays large variations in Th versus REE concentrations even at thin-section scale. Incorporation of Th is mainly governed by the huttonite substitution Th^4+ + Si^4+ = REE^3+ + P^5+. Thorium concentrations span the range 1.33 – 41.8 wt.% ThO2. Xenotime-(Y) does not occur in KBI1 and NBZ1, but crystallized in all other subintrusions. Notable is the predominance of the heaviest REE Er-Lu (normalized to chondrite). The data set contains the complete pile of electron-microprobe analyses for the four accessory minerals allanite-(Ce) (ALLA-KIB-NBZ2019), monazite-(Ce) (MONA-KIB-NBZ2019), xenotime-(Y) (XENO-KIB-NBZ2019) and zircon (ZIRC-KIB-NBZ2019). All tables are presented as Excel (xlsx) and machine-readable csv formats. The content of the tables and further data description are given in the data description file, together with BSE images of primary and secondary allanite-(Ce) from the KIB1 subintrusion.

Keywords


Originally assigned keywords
monazite
xenotime
zircon
allanite
mineral composition
magma differentiation
electronmicroprobe analysis
rare earth elements
Variscan orogeny
late Carboniferous
ErzgebirgeVogtland
multiphase biotitegranite plutons
ELEMENTS
IGNEOUS ROCKS
MINERALS

Corresponding MSL vocabulary keywords
monazite
zircon
minerals

MSL enriched keywords
minerals
phosphate minerals
monazite
silicate minerals
nesosilicates
zircon
igneous rock - intrusive
acidic intrusive
granite
sorosilicates
epidote
epidote
phyllosilicates
mica
biotite
tectonic plate boundary
convergent tectonic plate boundary
continental collision
orogen
equipment
electron probe micro-analyzer
measured property
thorium
Apparatus
microchemical analysis
electron probe micro analyser

MSL enriched sub domains i

geochemistry
microscopy and tomography


Source publisher

GFZ Data Services


DOI

10.5880/gfz.4.8.2019.001


Authors

Förster, Hans-Jürgen

GFZ German Research Centre for Geosciences, Potsdam, Germany;


Contributers

Rhede, Dieter

Other

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Appelt, Oona

Other

GFZ German Research Centre for Geosciences, Potsdam, Germany;


References

References

Anders, E., & Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53(1), 197–214. https://doi.org/10.1016/0016-7037(89)90286-x

10.1016/0016-7037(89)90286-X

References

IsDocumentedBy

IsDocumentedBy

Forster, H.-J., Tischendorf, G., Trumbull, R. B., & Gottesmann, B. (1999). Late-Collisional Granites in the Variscan Erzgebirge, Germany. Journal of Petrology, 40(11), 1613–1645. https://doi.org/10.1093/petroj/40.11.1613

10.1093/petroj/40.11.1613

IsDocumentedBy

Drake, M. J., & Weill, D. F. (1972). New rare earth element standards for electron microprobe analysis. Chemical Geology, 10(2), 179–181. https://doi.org/10.1016/0009-2541(72)90016-2

10.1016/0009-2541(72)90016-2

References

Jarosewich, E., & Boatner, L. A. (1991). Rare‐Earth Element Reference Samples for Electron Microprobe Analysis. Geostandards Newsletter, 15(2), 397–399. Portico. https://doi.org/10.1111/j.1751-908x.1991.tb00115.x

10.1111/j.1751-908X.1991.tb00115.x

References


Citiation

Förster, H.-J. (2019). Accessory Minerals in Felsic Igneous Rocks - Part 4: Composition of allanite-(Ce), monazite-(Ce), xenotime-(Y) and zircon from the multi-stage, weakly peraluminous F-poor granite massifs of Kirchberg and Niederbobritzsch (Erzgebirge−Vogtland metallogenic province, Germany) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.8.2019.001


Geo location(s)

Kirchberg Massif (KIB)

Niederbobritzsch Massif (NBZ)