Ring shearspan> test data of feldspar sand and quartz sand used in the Tectonic Laboratory (TecLab) at Utrecht University for experimental Earth Science applications

Willingshofer, Ernst; Sokoutis, Dimitrios; Beekman, Fred; Schönebeck, Jan-Michael; Warsitzka, Michael; Rosenau, Matthias;

2018-12 || GFZ Data Services

This dataset provides friction data from ring-shear tests (RST) on feldspar sand and quartz sand, which are used to simulate brittle behaviour in crust- and lithosphere-scale analogue experiments at the Tectonic Laboratory (TecLab), Utrecht University (NL) (Willingshofer et al., 2005; Willingshofer & Sokoutis, 2009; Athmer et al., 2010; Luth et al., 2010; Fernández-Lozano et al., 2011; Leever et al., 2011; Sokoutis & Willingshofer, 2011; Fernández-Lozano et al., 2012; Luth et al., 2013; Munteanu et al., 2013; Willingshofer et al., 2013; Munteanu et al., 2014; Calignano et al., 2015a, b; Ortner et al., 2015; Gabrielsen et al., 2016; Calignano et al., 2017; van Gelder et al., 2017; Wang et al., 2017; Beniest et al., 2018 ). The materials have been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam.



According to our analysis both materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the feldspar sand are µP = 0.68, µD = 0.55, and µR = 0.61, respectively. Friction coefficients of the quartz sand are µP = 0.63, µD = 0.48, and µR = 0.52, respectively. Cohesions of the feldspar sand and the quartz sand are in the order of few tens of Pa. A minor rate-weakening of 1% per ten-fold rate change is evident for the feldspar sand, whereas the quartz sand shows a significant rate weakening of ~5%.



Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.



Originally assigned keywords

Corresponding MSL vocabulary keywords

MSL enriched keywords

Originally assigned sub domains
  • analogue modelling of geologic processes
MSL enriched sub domains
  • rock and melt physics
  • analogue modelling of geologic processes
Source http://dx.doi.org/doi:10.5880/fidgeo.2018.072
Source publisher GFZ Data Services
DOI 10.5880/fidgeo.2018.072
License CC BY 4.0
Authors
  • Willingshofer, Ernst
  • 0000-0002-9119-5557
  • Department of Tectonics, Faculty of Earth Sciences, Utrecht University, Utrecht, The Netherlands

  • Sokoutis, Dimitrios
  • 0000-0003-0523-9785
  • Department of Tectonics, Faculty of Earth Sciences, Utrecht University, Utrecht, The Netherlands

  • Beekman, Fred
  • 0000-0002-8455-999X
  • Department of Tectonics, Faculty of Earth Sciences, Utrecht University, Utrecht, The Netherlands

  • Schönebeck, Jan-Michael
  • GFZ German Research Centre for Geosciences, Potsdam, Germany

  • Warsitzka, Michael
  • 0000-0003-1774-5888
  • GFZ German Research Centre for Geosciences, Potsdam, Germany

  • Rosenau, Matthias
  • 0000-0003-1134-5381
  • GFZ German Research Centre for Geosciences, Potsdam, Germany
References
  • Willingshofer, E., Sokoutis, D., & Burg, J.-P. (2005). Lithospheric-scale analogue modelling of collision zones with a pre-existing weak zone. Geological Society, London, Special Publications, 243(1), 277–294. https://doi.org/10.1144/gsl.sp.2005.243.01.18
  • 10.1144/GSL.SP.2005.243.01.18
  • IsSupplementTo

  • Ritter, M. C., Leever, K., Rosenau, M., & Oncken, O. (2016). Scaling the sandbox—Mechanical (dis) similarities of granular materials and brittle rock. Journal of Geophysical Research: Solid Earth, 121(9), 6863–6879. Portico. https://doi.org/10.1002/2016jb012915
  • 10.1002/2016JB012915
  • References

  • Santimano, T., Rosenau, M., & Oncken, O. (2015). Intrinsic versus extrinsic variability of analogue sand-box experiments – Insights from statistical analysis of repeated accretionary sand wedge experiments. Journal of Structural Geology, 75, 80–100. https://doi.org/10.1016/j.jsg.2015.03.008
  • 10.1016/j.jsg.2015.03.008
  • References

  • Schulze, D. (2003). Time‐ and Velocity‐Dependent Properties of Powders Effecting Slip‐Stick Oscillations. Chemical Engineering & Technology, 26(10), 1047–1051. Portico. https://doi.org/10.1002/ceat.200303112
  • 10.1002/ceat.200303112
  • References

  • References

  • Klinkmüller, M., Schreurs, G., Rosenau, M., & Kemnitz, H. (2016). Properties of granular analogue model materials: A community wide survey. Tectonophysics, 684, 23–38. https://doi.org/10.1016/j.tecto.2016.01.017
  • 10.1016/j.tecto.2016.01.017
  • References

  • ATHMER, W., GROENENBERG, R. M., LUTHI, S. M., DONSELAAR, M. E., SOKOUTIS, D., & WILLINGSHOFER, E. (2009). Relay ramps as pathways for turbidity currents: a study combining analogue sandbox experiments and numerical flow simulations. Sedimentology, 57(3), 806–823. https://doi.org/10.1111/j.1365-3091.2009.01120.x
  • 10.1111/j.1365-3091.2009.01120.x
  • References

  • Beniest, A., Willingshofer, E., Sokoutis, D., & Sassi, W. (2018). Extending Continental Lithosphere With Lateral Strength Variations: Effects on Deformation Localization and Margin Geometries. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00148
  • 10.3389/feart.2018.00148
  • References

  • Calignano, E., Sokoutis, D., Willingshofer, E., Brun, J.-P., Gueydan, F., & Cloetingh, S. (2017). Oblique contractional reactivation of inherited heterogeneities: Cause for arcuate orogens. Tectonics, 36(3), 542–558. Portico. https://doi.org/10.1002/2016tc004424
  • 10.1002/2016TC004424
  • References

  • Calignano, E., Sokoutis, D., Willingshofer, E., Gueydan, F., & Cloetingh, S. (2015). Asymmetric vs. symmetric deep lithospheric architecture of intra-plate continental orogens. Earth and Planetary Science Letters, 424, 38–50. https://doi.org/10.1016/j.epsl.2015.05.022
  • 10.1016/j.epsl.2015.05.022
  • References

  • Calignano, E., Sokoutis, D., Willingshofer, E., Gueydan, F., & Cloetingh, S. (2015). Strain localization at the margins of strong lithospheric domains: Insights from analog models. Tectonics, 34(3), 396–412. Portico. https://doi.org/10.1002/2014tc003756
  • 10.1002/2014TC003756
  • References

  • Fernández‐Lozano, J., Sokoutis, D., Willingshofer, E., Cloetingh, S., & De Vicente, G. (2011). Cenozoic deformation of Iberia: A model for intraplate mountain building and basin development based on analogue modeling. Tectonics, 30(1). Portico. https://doi.org/10.1029/2010tc002719
  • 10.1029/2010TC002719
  • References

  • Fernández‐Lozano, J., Sokoutis, D., Willingshofer, E., Dombrádi, E., Martín, A. M., De Vicente, G., & Cloetingh, S. (2012). Integrated gravity and topography analysis in analog models: Intraplate deformation in Iberia. Tectonics, 31(6). Portico. https://doi.org/10.1029/2012tc003122
  • 10.1029/2012TC003122
  • References

  • Gabrielsen, R. H., Sokoutis, D., Willingshofer, E., & Faleide, J. I. (2016). Fault linkage across weak layers during extension: an experimental approach with reference to the Hoop Fault Complex of the SW Barents Sea. Petroleum Geoscience, 22(2), 123–135. https://doi.org/10.1144/petgeo2015-029
  • 10.1144/petgeo2015-029
  • References

  • Leever, K. A., Gabrielsen, R. H., Sokoutis, D., & Willingshofer, E. (2011). The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high‐resolution digital image analysis. Tectonics, 30(2). Portico. https://doi.org/10.1029/2010tc002823
  • 10.1029/2010TC002823
  • References

  • Luth, S., Willingshofer, E., ter Borgh, M., Sokoutis, D., van Otterloo, J., & Versteeg, A. (2013). Kinematic analysis and analogue modelling of the Passeier- and Jaufen faults: implications for crustal indentation in the Eastern Alps. International Journal of Earth Sciences, 102(4), 1071–1090. https://doi.org/10.1007/s00531-012-0846-4
  • 10.1007/s00531-012-0846-4
  • References

  • Munteanu, I., Willingshofer, E., Matenco, L., Sokoutis, D., & Cloetingh, S. (2014). Far-field contractional polarity changes in models and nature. Earth and Planetary Science Letters, 395, 101–115. https://doi.org/10.1016/j.epsl.2014.03.036
  • 10.1016/j.epsl.2014.03.036
  • References

  • Munteanu, I., Willingshofer, E., Sokoutis, D., Matenco, L., Dinu, C., & Cloetingh, S. (2013). Transfer of deformation in back-arc basins with a laterally variable rheology: Constraints from analogue modelling of the Balkanides–Western Black Sea inversion. Tectonophysics, 602, 223–236. https://doi.org/10.1016/j.tecto.2013.03.009
  • 10.1016/j.tecto.2013.03.009
  • References

  • Ortner, H., Kositz, A., Willingshofer, E., & Sokoutis, D. (2015). Geometry of growth strata in a transpressive fold belt in field and analogue model: Gosau Group at Muttekopf, Northern Calcareous Alps, Austria. Basin Research, 28(6), 731–751. Portico. https://doi.org/10.1111/bre.12129
  • 10.1111/bre.12129
  • References

  • Sokoutis, D., & Willingshofer, E. (2011). Decoupling during continental collision and intra-plate deformation. Earth and Planetary Science Letters, 305(3–4), 435–444. https://doi.org/10.1016/j.epsl.2011.03.028
  • 10.1016/j.epsl.2011.03.028
  • References

  • van Gelder, I. E., Willingshofer, E., Sokoutis, D., & Cloetingh, S. A. P. L. (2017). The interplay between subduction and lateral extrusion: A case study for the European Eastern Alps based on analogue models. Earth and Planetary Science Letters, 472, 82–94. https://doi.org/10.1016/j.epsl.2017.05.012
  • 10.1016/j.epsl.2017.05.012
  • References

  • Wang, X., Luthi, S. M., Hodgson, D. M., Sokoutis, D., Willingshofer, E., & Groenenberg, R. M. (2016). Turbidite stacking patterns in salt‐controlled minibasins: Insights from integrated analogue models and numerical fluid flow simulations. Sedimentology, 64(2), 530–552. Portico. https://doi.org/10.1111/sed.12313
  • 10.1111/sed.12313
  • References

  • Willingshofer, E., & Sokoutis, D. (2009). Decoupling along plate boundaries: Key variable controlling the mode of deformation and the geometry of collisional mountain belts. Geology, 37(1), 39–42. https://doi.org/10.1130/g25321a.1
  • 10.1130/G25321A.1
  • References

  • Willingshofer, E., Sokoutis, D., & Burg, J.-P. (2005). Lithospheric-scale analogue modelling of collision zones with a pre-existing weak zone. Geological Society, London, Special Publications, 243(1), 277–294. https://doi.org/10.1144/gsl.sp.2005.243.01.18
  • 10.1144/GSL.SP.2005.243.01.18
  • References

  • Willingshofer, E., Sokoutis, D., Luth, S. W., Beekman, F., & Cloetingh, S. (2013). Subduction and deformation of the continental lithosphere in response to plate and crust-mantle coupling. Geology, 41(12), 1239–1242. https://doi.org/10.1130/g34815.1
  • 10.1130/G34815.1
  • References
Contact
  • Rosenau, Matthias
  • GFZ German Research Centre for Geosciences, Potsdam, Germany
  • rosen@gfz-potsdam.de
Citation Willingshofer, E., Sokoutis, D., Beekman, F., Schönebeck, J.-M., Warsitzka, M., & Rosenau, M. (2018). Ring shear test data of feldspar sand and quartz sand used in the Tectonic Laboratory (TecLab) at Utrecht University for experimental Earth Science applications [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2018.072