Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

3D-ALPS-TR: A 3D thermal and rheological model of the Alpine lithosphere

Spooner, Cameron | Scheck-Wenderoth, Magdalena | Cacace, Mauro | Anikiev, Anikiev

GFZ Data Services

(2020)

Despite the amount of research focused on the Alpine orogen, significant unknowns remain regarding the thermal field and long term lithospheric strength in the region. Previous published interpretations of these features primarily concern a limited number of 2D cross sections, and those that represent the region in 3D typically do not conform to measured data such as wellbore or seismic measurements. However, in the light of recently published higher resolution region specific 3D geophysical models, that conform to secondary data measurements, the generation of a more up to date revision of the thermal field and long term lithospheric yield strength is made possible, in order to shed light on open questions of the state of the orogen. The study area of this work focuses on a region of 660 km x 620 km covering the vast majority of the Alps and their forelands, with the Central and Eastern Alps and the northern foreland being the best covered regions.

Keywords


Originally assigned keywords
Alps
Forelands
Po Basin
Molasse Basin
Upper Rhine Graben
Ivrea Body
European Crust
Adriatic Crust
Sediment Thickness
Crustal Thickness
Vosges Massif
Black Forest Massif
Bohemian Massif
Mantle Density
4DMB
Mountain Building Processes in 4d
EARTH SCIENCE
SOLID EARTH
MOUNTAINS
GEOTHERMAL TEMPERATURE
STRESS
lithosphere
earths crust
continent
sedimentary basin
viscosity
geophysics

Corresponding MSL vocabulary keywords
lithosphere
viscosity
viscosity

MSL enriched keywords
Earth's structure
lithosphere
Measured property
viscosity
Measured property
viscosity
mechanical strength
yield strength
mechanical strength
yield strength
tectonic plate boundary
convergent tectonic plate boundary
continental collision
orogen

MSL enriched sub domains i

rock and melt physics
analogue modelling of geologic processes


Source publisher

GFZ Data Services


DOI

10.5880/gfz.4.5.2020.007


Authors

Spooner, Cameron

0000-0002-0690-8816

GFZ German Research Centre for Geosciences, Potsdam University; Institute of Earth and Environmental Science, Potsdam University, Potsdam, Germany;

Scheck-Wenderoth, Magdalena

0000-0003-0426-8269

GFZ German Research Centre for Geosciences, Potsdam, Germany; RWTH Aachen University, Aachen, Germany;

Cacace, Mauro

0000-0001-6101-9918

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Anikiev, Anikiev

0000-0002-4729-2659

GFZ German Research Centre for Geosciences, Potsdam, Germany;


Contributers

Spooner, Cameron

ContactPerson

0000-0002-0690-8816

GFZ German Research Centre for Geosciences, Potsdam University; Institute of Earth and Environmental Science, Potsdam University, Potsdam, Germany;

Scheck-Wenderoth, Magdalena

Supervisor

0000-0003-0426-8269

GFZ German Research Centre for Geosciences, Potsdam, Germany; RWTH Aachen University, Aachen, Germany;

Spooner, Cameron

ContactPerson

GFZ German Research Centre for Geosciences, Potsdam, Germany;


References

Spooner, C., Scheck-Wenderoth, M., Götze, H.-J., Ebbing, J., &amp; Hetényi, G. (2019). <i>3D Gravity Constrained Model of Density Distribution Across the Alpine Lithosphere</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.5.2019.004

10.5880/GFZ.4.5.2019.004

References

Spooner, C., Scheck-Wenderoth, M., Cacace, M., & Anikiev, D. (2020). How Alpine seismicity relates to lithospheric strength. https://doi.org/10.5194/se-2020-202

10.5194/se-2020-202

References

Spooner, C., Scheck-Wenderoth, M., Cacace, M., Götze, H.-J., & Luijendijk, E. (2020). The 3D thermal field across the Alpine orogen and its forelands and the relation to seismicity. Global and Planetary Change, 193, 103288. https://doi.org/10.1016/j.gloplacha.2020.103288

10.1016/j.gloplacha.2020.103288

References

Spooner, C., Scheck-Wenderoth, M., Götze, H.-J., Ebbing, J., & Hetényi, G. (2019). Density distribution across the Alpine lithosphere constrained by 3-D gravity modelling and relation to seismicity and deformation. Solid Earth, 10(6), 2073–2088. https://doi.org/10.5194/se-10-2073-2019

10.5194/se-10-2073-2019

References

Amante, C., &amp; Eakins, B. W. (2009). <i>ETOPO1 Global Relief Model converted to PanMap layer format</i> [Data set]. PANGAEA. https://doi.org/10.1594/PANGAEA.769615

10.1594/PANGAEA.769615

Cites

Cacace, M., & Jacquey, A. B. (2017). Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks. Solid Earth, 8(5), 921–941. https://doi.org/10.5194/se-8-921-2017

10.5194/se-8-921-2017

Cites

Fan, Y., & van den Dool, H. (2008). A global monthly land surface air temperature analysis for 1948–present. Journal of Geophysical Research: Atmospheres, 113(D1). Portico. https://doi.org/10.1029/2007jd008470

10.1029/2007JD008470

Cites

Freymark, J., Sippel, J., Scheck-Wenderoth, M., Bär, K., Stiller, M., Fritsche, J.-G., & Kracht, M. (2017). The deep thermal field of the Upper Rhine Graben. Tectonophysics, 694, 114–129. https://doi.org/10.1016/j.tecto.2016.11.013

10.1016/j.tecto.2016.11.013

Cites

Geissler, W. H., Sodoudi, F., & Kind, R. (2010). Thickness of the central and eastern European lithosphere as seen bySreceiver functions. Geophysical Journal International. https://doi.org/10.1111/j.1365-246x.2010.04548.x

10.1111/j.1365-246X.2010.04548.x

Cites

Przybycin, A. M., Scheck-Wenderoth, M., & Schneider, M. (2015). The 3D conductive thermal field of the North Alpine Foreland Basin: influence of the deep structure and the adjacent European Alps. Geothermal Energy, 3(1). https://doi.org/10.1186/s40517-015-0038-0

10.1186/s40517-015-0038-0

Cites

Schaeffer, A. J., & Lebedev, S. (2013). Global shear speed structure of the upper mantle and transition zone. Geophysical Journal International, 194(1), 417–449. https://doi.org/10.1093/gji/ggt095

10.1093/gji/ggt095

Cites

Trumpy, E., & Manzella, A. (2017). Geothopica and the interactive analysis and visualization of the updated Italian National Geothermal Database. International Journal of Applied Earth Observation and Geoinformation, 54, 28–37. https://doi.org/10.1016/j.jag.2016.09.004

10.1016/j.jag.2016.09.004

Cites

Spooner, C., Scheck-Wenderoth, M., Götze, H.-J., Ebbing, J., &amp; Hetényi, G. (2019). <i>3D Gravity Constrained Model of Density Distribution Across the Alpine Lithosphere</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.5.2019.004

10.5880/GFZ.4.5.2019.004

IsContinuedBy

Spooner, C., Scheck-Wenderoth, M., Cacace, M., & Anikiev, D. (2020). How Alpine seismicity relates to lithospheric strength. https://doi.org/10.5194/se-2020-202

10.5194/se-2020-202

IsSupplementTo


Contact

Spooner, Cameron

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Spooner, Cameron

GFZ German Research Centre for Geosciences, Potsdam, Germany;


Citiation

Spooner, C., Scheck-Wenderoth, M., Cacace, M., & Anikiev, A. (2020). 3D-ALPS-TR: A 3D thermal and rheological model of the Alpine lithosphere [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.5.2020.007