Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.
Data Publication
3D rheological model of the Southern Central Andes
Rodriguez Piceda, Constanza | Scheck-Wenderoth, Magdalena | Cacace, Mauro | Bott, Judith | Strecker, Manfred
GFZ Data Services
(2021)
The southern Central Andes (SCA, 29°S-39°S) are characterized by the subduction of the oceanic Nazca Plate beneath the continental South American Plate. One striking feature of this area is the change of the subduction angle of the Nazca Plate between 33°S and 35°S from the Chilean-Pampean flat-slab zone (< 5° dip) in the north to a steeper sector in the south (~30° dip). Subduction geometry, tectonic deformation, and seismicity at this plate boundary are closely related to the lithospheric strength in the upper plate. Despite recent research focused on the compositional and thermal characteristics of the SCA lithosphere, the lithospheric strength distribution remains largely unknown. Here we calculated the long-term lithospheric strength on the basis of an existing 3D model describing the variation of thickness, density and temperature of geological units forming the lithosphere of the SCA. The model consists of a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen (i.e. magmatic arc, main orogenic wedge), the forearc and the foreland, and it extents down to 200 km depth.
Keywords
Originally assigned keywords
Corresponding MSL vocabulary keywords
MSL enriched keywords
Source publisher
GFZ Data Services
DOI
10.5880/gfz.4.5.2021.002
Authors
Rodriguez Piceda, Constanza
0000-0002-0785-7600
GFZ German Research Centre for Geosciences, Potsdam, Germany; University of Potsdam, Potsdam, Germany;
Scheck-Wenderoth, Magdalena
0000-0003-0426-8269
GFZ German Research Centre for Geosciences, Potsdam, Germany; RWTH Aachen, Aachen, Germany;
Cacace, Mauro
0000-0001-6101-9918
CONICET; University of Buenos Aires, Buenos Aires, Argentina;
Bott, Judith
0000-0002-2018-4754
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Strecker, Manfred
0000-0002-5952-0057
University of Potsdam, Potsdam, Germany;
Contributers
Rodriguez Piceda, Constanza
ContactPerson
GFZ German Research Centre for Geosciences, Potsdam, Germany;
References
Afonso, J. C., & Ranalli, G. (2004). Crustal and mantle strengths in continental lithosphere: is the jelly sandwich model obsolete? Tectonophysics, 394(3–4), 221–232. https://doi.org/10.1016/j.tecto.2004.08.006
10.1016/j.tecto.2004.08.006
Cites
Assumpção, M., Feng, M., Tassara, A., & Julià, J. (2013). Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave tomography. Tectonophysics, 609, 82–96. https://doi.org/10.1016/j.tecto.2012.11.014
10.1016/j.tecto.2012.11.014
Cites
Burov, E. B. (2011). Rheology and strength of the lithosphere. Marine and Petroleum Geology, 28(8), 1402–1443. https://doi.org/10.1016/j.marpetgeo.2011.05.008
10.1016/j.marpetgeo.2011.05.008
Cites
Byerlee, J. D. (1968). Brittle-ductile transition in rocks. Journal of Geophysical Research, 73(14), 4741–4750. https://doi.org/10.1029/jb073i014p04741
10.1029/JB073i014p04741
Cites
Cacace, M., & Jacquey, A. B. (2017). Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks. Solid Earth, 8(5), 921–941. https://doi.org/10.5194/se-8-921-2017
10.5194/se-8-921-2017
Cites
Cacace, M., & Scheck‐Wenderoth, M. (2016). Why intracontinental basins subside longer: 3‐D feedback effects of lithospheric cooling and sedimentation on the flexural strength of the lithosphere. Journal of Geophysical Research: Solid Earth, 121(5), 3742–3761. Portico. https://doi.org/10.1002/2015jb012682
10.1002/2015JB012682
Cites
Gao, Y., Yuan, X., Heit, B., Tilmann, F., van Herwaarden, D. P., Thrastarson, S., Fichtner, A., & Schurr, B. D. (2021). Impact of the Juan Fernandez ridge on the Pampean flat subduction inferred from full waveform inversion. https://doi.org/10.1002/essoar.10507705.1
10.1002/essoar.10507705.1
Cites
Gleason, G. C., & Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247(1–4), 1–23. https://doi.org/10.1016/0040-1951(95)00011-b
10.1016/0040-1951(95)00011-B
Cites
Goes, S., Govers, R., & Vacher, P. (2000). Shallow mantle temperatures under Europe from P and S wave tomography. Journal of Geophysical Research: Solid Earth, 105(B5), 11153–11169. Portico. https://doi.org/10.1029/1999jb900300
10.1029/1999JB900300
Cites
Goetze, C., & Evans, B. (1979). Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophysical Journal International, 59(3), 463–478. https://doi.org/10.1111/j.1365-246x.1979.tb02567.x
10.1111/j.1365-246X.1979.tb02567.x
Cites
The mechanisms of creep in olivine. (1978). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 288(1350), 99–119. https://doi.org/10.1098/rsta.1978.0008
10.1098/rsta.1978.0008
Cites
Hirth, G., & Kohlstedt, D. L. (1996). Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144(1–2), 93–108. https://doi.org/10.1016/0012-821x(96)00154-9
10.1016/0012-821X(96)00154-9
Cites
Katayama, I., & Karato, S. (2008). Low-temperature, high-stress deformation of olivine under water-saturated conditions. Physics of the Earth and Planetary Interiors, 168(3–4), 125–133. https://doi.org/10.1016/j.pepi.2008.05.019
10.1016/j.pepi.2008.05.019
Cites
Meeßen, C. (2017). <i>VelocityConversion</i>. GFZ Data Services. https://doi.org/10.5880/GFZ.6.1.2017.001
10.5880/GFZ.6.1.2017.001
Cites
Ranalli, G., & Murphy, D. C. (1987). Rheological stratification of the lithosphere. Tectonophysics, 132(4), 281–295. https://doi.org/10.1016/0040-1951(87)90348-9
10.1016/0040-1951(87)90348-9
Cites
Rodriguez Piceda, C., Scheck Wenderoth, M., Gomez Dacal, M. L., Bott, J., Prezzi, C. B., & Strecker, M. R. (2020). Lithospheric density structure of the southern Central Andes constrained by 3D data-integrative gravity modelling. International Journal of Earth Sciences, 110(7), 2333–2359. https://doi.org/10.1007/s00531-020-01962-1
10.1007/s00531-020-01962-1
Cites
Rodriguez Piceda, C., Scheck-Wenderoth, M., Gomez Dacal, M. L., Bott, J., Prezzi, C., & Strecker, M. (2020). <i>Lithospheric-scale 3D model of the Southern Central Andes</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.5.2020.001
10.5880/GFZ.4.5.2020.001
References
Wilks, K. R., & Carter, N. L. (1990). Rheology of some continental lower crustal rocks. Tectonophysics, 182(1–2), 57–77. https://doi.org/10.1016/0040-1951(90)90342-6
10.1016/0040-1951(90)90342-6
Cites
10.1029/2021GC010171R
IsSupplementTo
Contact
Rodriguez Piceda, Constanza
GFZ German Research Centre for Geosciences, Potsdam, Germany;
Citiation
Rodriguez Piceda, C., Scheck-Wenderoth, M., Cacace, M., Bott, J., & Strecker, M. (2021). 3D rheological model of the Southern Central Andes (Version 1.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.5.2021.002