Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

3D rheological model of the Southern Central Andes

Rodriguez Piceda, Constanza | Scheck-Wenderoth, Magdalena | Cacace, Mauro | Bott, Judith | Strecker, Manfred

GFZ Data Services

(2021)

The southern Central Andes (SCA, 29°S-39°S) are characterized by the subduction of the oceanic Nazca Plate beneath the continental South American Plate. One striking feature of this area is the change of the subduction angle of the Nazca Plate between 33°S and 35°S from the Chilean-Pampean flat-slab zone (< 5° dip) in the north to a steeper sector in the south (~30° dip). Subduction geometry, tectonic deformation, and seismicity at this plate boundary are closely related to the lithospheric strength in the upper plate. Despite recent research focused on the compositional and thermal characteristics of the SCA lithosphere, the lithospheric strength distribution remains largely unknown. Here we calculated the long-term lithospheric strength on the basis of an existing 3D model describing the variation of thickness, density and temperature of geological units forming the lithosphere of the SCA. The model consists of a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen (i.e. magmatic arc, main orogenic wedge), the forearc and the foreland, and it extents down to 200 km depth.

Keywords


Originally assigned keywords
Lithosphere
Rheology
Subduction
Andes
EARTH SCIENCE
SOLID EARTH
MOUNTAINS
SUBDUCTION
STRESS

Corresponding MSL vocabulary keywords
lithosphere
subduction

MSL enriched keywords
Earth's structure
lithosphere
tectonic plate boundary
convergent tectonic plate boundary
subduction
continental collision
orogen
accretionary wedge


Source publisher

GFZ Data Services


DOI

10.5880/gfz.4.5.2021.002


Authors

Rodriguez Piceda, Constanza

0000-0002-0785-7600

GFZ German Research Centre for Geosciences, Potsdam, Germany; University of Potsdam, Potsdam, Germany;

Scheck-Wenderoth, Magdalena

0000-0003-0426-8269

GFZ German Research Centre for Geosciences, Potsdam, Germany; RWTH Aachen, Aachen, Germany;

Cacace, Mauro

0000-0001-6101-9918

CONICET; University of Buenos Aires, Buenos Aires, Argentina;

Bott, Judith

0000-0002-2018-4754

GFZ German Research Centre for Geosciences, Potsdam, Germany;

Strecker, Manfred

0000-0002-5952-0057

University of Potsdam, Potsdam, Germany;


Contributers

Rodriguez Piceda, Constanza

ContactPerson

GFZ German Research Centre for Geosciences, Potsdam, Germany;


References

Afonso, J. C., & Ranalli, G. (2004). Crustal and mantle strengths in continental lithosphere: is the jelly sandwich model obsolete? Tectonophysics, 394(3–4), 221–232. https://doi.org/10.1016/j.tecto.2004.08.006

10.1016/j.tecto.2004.08.006

Cites

Assumpção, M., Feng, M., Tassara, A., & Julià, J. (2013). Models of crustal thickness for South America from seismic refraction, receiver functions and surface wave tomography. Tectonophysics, 609, 82–96. https://doi.org/10.1016/j.tecto.2012.11.014

10.1016/j.tecto.2012.11.014

Cites

Burov, E. B. (2011). Rheology and strength of the lithosphere. Marine and Petroleum Geology, 28(8), 1402–1443. https://doi.org/10.1016/j.marpetgeo.2011.05.008

10.1016/j.marpetgeo.2011.05.008

Cites

Byerlee, J. D. (1968). Brittle-ductile transition in rocks. Journal of Geophysical Research, 73(14), 4741–4750. https://doi.org/10.1029/jb073i014p04741

10.1029/JB073i014p04741

Cites

Cacace, M., & Jacquey, A. B. (2017). Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks. Solid Earth, 8(5), 921–941. https://doi.org/10.5194/se-8-921-2017

10.5194/se-8-921-2017

Cites

Cacace, M., & Scheck‐Wenderoth, M. (2016). Why intracontinental basins subside longer: 3‐D feedback effects of lithospheric cooling and sedimentation on the flexural strength of the lithosphere. Journal of Geophysical Research: Solid Earth, 121(5), 3742–3761. Portico. https://doi.org/10.1002/2015jb012682

10.1002/2015JB012682

Cites

Gao, Y., Yuan, X., Heit, B., Tilmann, F., van Herwaarden, D. P., Thrastarson, S., Fichtner, A., & Schurr, B. D. (2021). Impact of the Juan Fernandez ridge on the Pampean flat subduction inferred from full waveform inversion. https://doi.org/10.1002/essoar.10507705.1

10.1002/essoar.10507705.1

Cites

Gleason, G. C., & Tullis, J. (1995). A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247(1–4), 1–23. https://doi.org/10.1016/0040-1951(95)00011-b

10.1016/0040-1951(95)00011-B

Cites

Goes, S., Govers, R., & Vacher, P. (2000). Shallow mantle temperatures under Europe from P and S wave tomography. Journal of Geophysical Research: Solid Earth, 105(B5), 11153–11169. Portico. https://doi.org/10.1029/1999jb900300

10.1029/1999JB900300

Cites

Goetze, C., & Evans, B. (1979). Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophysical Journal International, 59(3), 463–478. https://doi.org/10.1111/j.1365-246x.1979.tb02567.x

10.1111/j.1365-246X.1979.tb02567.x

Cites

The mechanisms of creep in olivine. (1978). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 288(1350), 99–119. https://doi.org/10.1098/rsta.1978.0008

10.1098/rsta.1978.0008

Cites

Hirth, G., & Kohlstedt, D. L. (1996). Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144(1–2), 93–108. https://doi.org/10.1016/0012-821x(96)00154-9

10.1016/0012-821X(96)00154-9

Cites

Katayama, I., & Karato, S. (2008). Low-temperature, high-stress deformation of olivine under water-saturated conditions. Physics of the Earth and Planetary Interiors, 168(3–4), 125–133. https://doi.org/10.1016/j.pepi.2008.05.019

10.1016/j.pepi.2008.05.019

Cites

Meeßen, C. (2017). <i>VelocityConversion</i>. GFZ Data Services. https://doi.org/10.5880/GFZ.6.1.2017.001

10.5880/GFZ.6.1.2017.001

Cites

Ranalli, G., & Murphy, D. C. (1987). Rheological stratification of the lithosphere. Tectonophysics, 132(4), 281–295. https://doi.org/10.1016/0040-1951(87)90348-9

10.1016/0040-1951(87)90348-9

Cites

Rodriguez Piceda, C., Scheck Wenderoth, M., Gomez Dacal, M. L., Bott, J., Prezzi, C. B., & Strecker, M. R. (2020). Lithospheric density structure of the southern Central Andes constrained by 3D data-integrative gravity modelling. International Journal of Earth Sciences, 110(7), 2333–2359. https://doi.org/10.1007/s00531-020-01962-1

10.1007/s00531-020-01962-1

Cites

Rodriguez Piceda, C., Scheck-Wenderoth, M., Gomez Dacal, M. L., Bott, J., Prezzi, C., &amp; Strecker, M. (2020). <i>Lithospheric-scale 3D model of the Southern Central Andes</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.5.2020.001

10.5880/GFZ.4.5.2020.001

References

Wilks, K. R., & Carter, N. L. (1990). Rheology of some continental lower crustal rocks. Tectonophysics, 182(1–2), 57–77. https://doi.org/10.1016/0040-1951(90)90342-6

10.1016/0040-1951(90)90342-6

Cites

10.1029/2021GC010171R

IsSupplementTo


Contact

Rodriguez Piceda, Constanza

GFZ German Research Centre for Geosciences, Potsdam, Germany;


Citiation

Rodriguez Piceda, C., Scheck-Wenderoth, M., Cacace, M., Bott, J., & Strecker, M. (2021). 3D rheological model of the Southern Central Andes (Version 1.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.5.2021.002