Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Radiometric Dates from the South American Andes and Adjacent Areas: A Compilation - part 1 igenous rocks

Pilger, Rex H. Jr

GFZ Data Services

(2022)

A compilation of 39,070 published radiometric dates for igneous rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included. While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers. Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.) This compilation is part of a series. Companion compilations of radiometric dates from sedimentary and metamorphic rocks are available at https://doi.org/10.5880/digis.e.2023.006 and https://doi.org/10.5880/digis.e.2023.007, respectively.

Keywords


Originally assigned keywords
Earth and Environmental Sciences
GEOROC Expert Dataset
radiometric dates
igneous rocks
South America
Argentina
Bolivia
Brazil
Chile
Colombia
Ecuador
Peru
ash
charcoal
pumice
volcanic glass
whole rock
basalt
diorite
monzodiorite
obsidian
monzonite
actinolite
adularia
alunite
amphibole
apatite
biotite
clinopyroxene
hornblende
illite
K feldspar
kaersutite
mica
molybdenite
monazite
muscovite
natrojarosite
nepheline
olivine
orthoclase
phlogopite
plagioclase
pyroxene
rutile
sanidine
sericite
titanite
zircon
Ar40Ar39
C14
Electron spin resonance age analysis
Fission track counting
He
KAr
PbPb
Pb206U238
Pb207Pb206
Pb207U235
RbSr
ReOs
SmNd
UPb
UTh
UThHe
UThPb
igneous rock
CHEMICAL CONCENTRATIONS
ISOTOPES
ISOTOPIC AGE

Corresponding MSL vocabulary keywords
pumice
pumice
pumice
volcanic glass
basalt
diorite
obsidian
monzonite
actinolite
amphibole
apatite
biotite
hornblende
illite
mica
molybdenite
monazite
muscovite
nepheline
olivine
orthoclase
phlogopite
feldspar - plagioclase
rutile
sanidine
sericite
titanite
zircon
potassium-argon dating
potassium-argon age
lead-lead dating
lead-lead age
rubidium-strontium dating
rubidium-strontium age
rhenium-osmium dating
rhenium-osmium age
samarium-neodymium dating
samarium-neodymium age
uranium-lead dating
uranium-lead age

MSL enriched keywords
igneous rock - extrusive
volcanic glass
pumice
unconsolidated sediment
tephra
pumice
analogue modelling material
granular modelling material
natural granular material
pumice
basic extrusive
basalt
igneous rock - intrusive
intermediate intrusive
diorite
obsidian
monzonite
minerals
silicate minerals
inosilicates
amphibole
actinolite
carbonate minerals
apatite
phyllosilicates
mica
biotite
hornblende
clay
illite
sulfide minerals
molybdenite
phosphate minerals
monazite
muscovite
tectosilicates
feldspathoid
nepheline
nesosilicates
olivine
feldspar - K-feldspar
orthoclase
phlogopite
feldspar - plagioclase
oxide mineral
rutile
sanidine
sericite
titanite
zircon
analysis
geochronology
potassium-argon dating
measured property
age of sample
potassium-argon age
lead-lead dating
lead-lead age
rubidium-strontium dating
rubidium-strontium age
rhenium-osmium dating
rhenium-osmium age
samarium-neodymium dating
samarium-neodymium age
uranium dating
uranium-lead dating
uranium age
uranium-lead age

MSL enriched sub domains i

geochemistry


Source publisher

GFZ Data Services


DOI

10.5880/digis.e.2023.005


Authors

Pilger, Rex H. Jr

0000-0003-3715-5084


Contributers

Pilger, Rex H. Jr

ContactPerson

0000-0003-3715-5084

Pilger, Rex H. Jr.

ContactPerson

DIGIS Team

ContactPerson

University of Göttingen, Göttingen, Germany;


References

Pilger, R. H. (2022). <i>Radiometric Dates from the South American Andes and Adjacent Areas: A Compilation</i> [Data set]. GRO.data. https://doi.org/10.25625/NGG0Q7

10.25625/NGG0Q7

IsPartOf

PILGER, R. H. (1981). Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes. Geological Society of America Bulletin, 92(7), 448. https://doi.org/10.1130/0016-7606(1981)92<448:praral>2.0.co;2

10.1130/0016-7606(1981)92<448:praral>2.0.co;2

IsSupplementTo

Pilger, R. H. (1984). Cenozoic plate kinematics, subduction and magmatism: South American Andes. Journal of the Geological Society, 141(5), 793–802. https://doi.org/10.1144/gsjgs.141.5.0793

10.1144/gsjgs.141.5.0793

IsSupplementTo

Cites

Adriasola, A. C., Thomson, S. N., Brix, M. R., Hervé, F., & Stöckhert, B. (2005). Postmagmatic cooling and late Cenozoic denudation of the North Patagonian Batholith in the Los Lagos region of Chile, 41°−42°15′S. International Journal of Earth Sciences, 95(3), 504–528. https://doi.org/10.1007/s00531-005-0027-9

10.1007/s00531-005-0027-9

Cites

Aguirre, L. (1988). Chemical mobility during low-grade metamorphism of a Jurassic lava flow: Río Grande Formation, Peru. Journal of South American Earth Sciences, 1(4), 343–361. https://doi.org/10.1016/0895-9811(88)90022-3

10.1016/0895-9811(88)90022-3

Cites

AGUIRRE-URRETA, B., LESCANO, M., SCHMITZ, M. D., TUNIK, M., CONCHEYRO, A., RAWSON, P. F., & RAMOS, V. A. (2015). Filling the gap: new precise Early Cretaceous radioisotopic ages from the Andes. Geological Magazine, 152(3), 557–564. https://doi.org/10.1017/s001675681400082x

10.1017/S001675681400082X

Cites

Aguirre-Urreta, M. B., Pazos, P. J., Lazo, D. G., Mark Fanning, C., & Litvak, V. D. (2008). First U–Pb SHRIMP age of the Hauterivian stage, Neuquén Basin, Argentina. Journal of South American Earth Sciences, 26(1), 91–99. https://doi.org/10.1016/j.jsames.2008.01.001

10.1016/j.jsames.2008.01.001

Cites

Aitcheson, S. J., Harmon, R. S., Moorbath, S., Schneider, A., Soler, P., Soria-Escalante, E., Steele, G., Swainbank, I., & Wörner, G. (1995). Pb isotopes define basement domains of the Altiplano, central Andes. Geology, 23(6), 555. https://doi.org/10.1130/0091-7613(1995)023<0555:pidbdo>2.3.co;2

10.1130/0091-7613(1995)023%3C0555:PIDBDO%3E2.3.CO;2

Cites

Albert, C., Farina, F., Lana, C., Stevens, G., Storey, C., Gerdes, A., & Dopico, C. M. (2016). Archean crustal evolution in the Southern São Francisco craton, Brazil: Constraints from U-Pb, Lu-Hf and O isotope analyses. Lithos, 266–267, 64–86. https://doi.org/10.1016/j.lithos.2016.09.029

10.1016/j.lithos.2016.09.029

Cites

Allibon, J., Monjoie, P., Lapierre, H., Jaillard, E., Bussy, F., Bosch, D., & Senebier, F. (2008). The contribution of the young Cretaceous Caribbean Oceanic Plateau to the genesis of late Cretaceous arc magmatism in the Cordillera Occidental of Ecuador. Journal of South American Earth Sciences, 26(4), 355–368. https://doi.org/10.1016/j.jsames.2008.06.003

10.1016/j.jsames.2008.06.003

Cites

Allmendinger, R. W., González, G., Yu, J., Hoke, G., & Isacks, B. (2005). Trench-parallel shortening in the Northern Chilean Forearc: Tectonic and climatic implications. Geological Society of America Bulletin, 117(1), 89. https://doi.org/10.1130/b25505.1

10.1130/B25505.1

Cites

ALMEIDA, F. F. M. D., CARNEIRO, C. D. R., & MIZUSAKI, A. M. P. (1996). CORRELAÇÃO DO MAGMATISMO DAS BACIAS DA MARGEM CONTINENTAL BRASILEIRA COM O DAS ÁREAS EMERSAS ADJACENTES. Revista Brasileira de Geociências, 26(3), 125–138. https://doi.org/10.25249/0375-7536.19963125138

10.25249/0375-7536.19963125138

Cites

Alonso, R. N., Jordan, T. E., Tabbutt, K. T., & Vandervoort, D. S. (1991). Giant evaporite belts of the Neogene central Andes. Geology, 19(4), 401. https://doi.org/10.1130/0091-7613(1991)019<0401:gebotn>2.3.co;2

10.1130/0091-7613(1991)019%3C0401:GEBOTN%3E2.3.CO;2

Cites

Altenberger, U., Oberhänsli, R., Putlitz, B., & Wemmer, K. (2003). Tectonic controls and Cenozoic magmatism at the Torres del Paine, southern Andes (Chile, 51°10’S). Revista Geológica de Chile, 30(1). https://doi.org/10.4067/s0716-02082003000100005

10.4067/S0716-02082003000100005

Cites

Álvarez, J., Mpodozis, C., Blanco-Quintero, I., García-Casco, A., Arriagada, C., & Morata, D. (2013). U–Pb ages and metamorphic evolution of the La Pampa Gneisses: Implications for the evolution of the Chilenia Terrane and Permo-Triassic tectonics of north Central Chile. Journal of South American Earth Sciences, 47, 100–115. https://doi.org/10.1016/j.jsames.2013.07.001

10.1016/j.jsames.2013.07.001

Cites

Alves, A., Janasi, V. de A., Campos Neto, M. da C., Heaman, L., & Simonetti, A. (2013). U–Pb geochronology of the granite magmatism in the Embu Terrane: Implications for the evolution of the Central Ribeira Belt, SE Brazil. Precambrian Research, 230, 1–12. https://doi.org/10.1016/j.precamres.2013.01.018

10.1016/j.precamres.2013.01.018

Cites

Ambrus, J. (1977). Geology of the El Abra porphyry copper deposit, Chile. Economic Geology, 72(6), 1062–1085. https://doi.org/10.2113/gsecongeo.72.6.1062

10.2113/gsecongeo.72.6.1062

Cites

Amidon, W. H., Luna, L. V., Fisher, G. B., Burbank, D. W., Kylander‐Clark, A. R. C., & Alonso, R. (2015). Provenance and tectonic implications of Orán Group foreland basin sediments, Río Iruya canyon, <scp>NW</scp> Argentina (23° S). Basin Research, 29(S1), 96–112. Portico. https://doi.org/10.1111/bre.12139

10.1111/bre.12139

Cites


Contact

DIGIS Team

University of Göttingen, Göttingen, Germany;

DIGIS Team

University of Göttingen, Göttingen, Germany;

DIGIS Team

University of Göttingen, Göttingen, Germany;


Citiation

Pilger, R. H. J. (2022). Radiometric Dates from the South American Andes and Adjacent Areas: A Compilation - part 1 igenous rocks [Data set]. GFZ Data Services. https://doi.org/10.5880/DIGIS.E.2023.005


Geo location(s)

Argentina, Plurinational State of Bolivia, Brazil, Chile, Colombia, Ecuador, Peru