Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.
Data Publication
A novel method for analogue modelling of lithospheric-scale rifting, monitored through X-Ray CT-scanning, at the University of Bern Tectonic Modelling Laboratory (Switzerland)
Zwaan, Frank | Schreurs, Guido
GFZ Data Services
(2023)
This data set is a description of a novel analogue modelling method used to run lithospheric-scale tectonic models, and to uniquely monitor these models through X-Ray CT-scanning techniques at the Tectonic Modelling Lab of the University of Bern (Switzerland). It includes information on the model set-up and model materials, and includes a step-by-step description of the general modelling procedure. A first application of this novel procedure, for the simulation of lithospheric scale rifting processes can be found in Zwaan & Schreurs (2023a) in Tectonics, with supplementary data publicly available via GFZ Data Services (Zwaan & Schreurs 2023b). The results of this work prove the feasibility of the method, and opens the door to a broad variety of new tectonic modelling studies.
Keywords
Originally assigned keywords
Corresponding MSL vocabulary keywords
MSL enriched keywords
MSL original sub domains
MSL enriched sub domains i
Source publisher
GFZ Data Services
DOI
10.5880/fidgeo.2023.005
Authors
Zwaan, Frank
0000-0001-8226-2132
Institute of Geological Sciences of the University of Bern, Switzerland
Schreurs, Guido
0000-0002-4544-7514
Institute of Geological Sciences of the University of Bern, Switzerland
References
Zwaan, F., & Schreurs, G. (2023). Analog Models of Lithospheric‐Scale Rifting Monitored in an X‐Ray CT Scanner. Tectonics, 42(3). Portico. https://doi.org/10.1029/2022tc007291
10.1029/2022TC007291
IsSupplementTo
Adam, J., Klinkmüller, M., Schreurs, G., & Wieneke, B. (2013). Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation: Integration of X-ray computed tomography and digital volume correlation techniques. Journal of Structural Geology, 55, 127–149. https://doi.org/10.1016/j.jsg.2013.07.011
10.1016/j.jsg.2013.07.011
Cites
Allemand, P., & Brun, J.-P. (1991). Width of continental rifts and rheological layering of the lithosphere. Tectonophysics, 188(1–2), 63–69. https://doi.org/10.1016/0040-1951(91)90314-i
10.1016/0040-1951(91)90314-I
Cites
Alonso-Henar, J., Schreurs, G., Martinez-Díaz, J. J., Álvarez-Gómez, J. A., & Villamor, P. (2015). Neotectonic development of the El Salvador Fault Zone and implications for deformation in the Central America Volcanic Arc: Insights from 4-D analog modeling experiments. Tectonics, 34(1), 133–151. Portico. https://doi.org/10.1002/2014tc003723
10.1002/2014TC003723
Cites
Autin, J., Bellahsen, N., Husson, L., Beslier, M.-O., Leroy, S., & d’Acremont, E. (2010). Analog models of oblique rifting in a cold lithosphere. Tectonics, 29(6), n/a-n/a. https://doi.org/10.1029/2010tc002671
10.1029/2010TC002671
Cites
Autin, J., Bellahsen, N., Leroy, S., Husson, L., Beslier, M.-O., & d’Acremont, E. (2013). The role of structural inheritance in oblique rifting: Insights from analogue models and application to the Gulf of Aden. Tectonophysics, 607, 51–64. https://doi.org/10.1016/j.tecto.2013.05.041
10.1016/j.tecto.2013.05.041
Cites
Benes, V., & Davy, P. (1996). Modes of continental lithospheric extension: experimental verification of strain localization processes. Tectonophysics, 254(1–2), 69–87. https://doi.org/10.1016/0040-1951(95)00076-3
10.1016/0040-1951(95)00076-3
Cites
Benes, V., & Scott, S. D. (1996). Oblique rifting in the Havre Trough and its propagation into the continental margin of New Zealand: Comparison with analogue experiments. Marine Geophysical Researches, 18(2–4), 189–201. https://doi.org/10.1007/bf00286077
10.1007/BF00286077
Cites
Beniest, A., Willingshofer, E., Sokoutis, D., & Sassi, W. (2018). Extending Continental Lithosphere With Lateral Strength Variations: Effects on Deformation Localization and Margin Geometries. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00148
10.3389/feart.2018.00148
Cites
Cites
Boutelier, D., Schrank, C., & Regenauer-Lieb, K. (2019). 2-D finite displacements and strain from particle imaging velocimetry (PIV) analysis of tectonic analogue models with TecPIV. Solid Earth, 10(4), 1123–1139. https://doi.org/10.5194/se-10-1123-2019
10.5194/se-10-1123-2019
Cites
Brun, J.-P. (2002). Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications, 200(1), 355–370. https://doi.org/10.1144/gsl.sp.2001.200.01.20
10.1144/GSL.SP.2001.200.01.20
Cites
Brun, J. P., & Beslier, M. O. (1996). Mantle exhumation at passive margins. Earth and Planetary Science Letters, 142(1–2), 161–173. https://doi.org/10.1016/0012-821x(96)00080-5
10.1016/0012-821X(96)00080-5
Cites
Calignano, E., Sokoutis, D., Willingshofer, E., Gueydan, F., & Cloetingh, S. (2015). Asymmetric vs. symmetric deep lithospheric architecture of intra-plate continental orogens. Earth and Planetary Science Letters, 424, 38–50. https://doi.org/10.1016/j.epsl.2015.05.022
10.1016/j.epsl.2015.05.022
Cites
Calignano, E., Sokoutis, D., Willingshofer, E., Brun, J.-P., Gueydan, F., & Cloetingh, S. (2017). Oblique contractional reactivation of inherited heterogeneities: Cause for arcuate orogens. Tectonics, 36(3), 542–558. Portico. https://doi.org/10.1002/2016tc004424
10.1002/2016TC004424
Cites
Cappelletti, A., Tsikalas, F., Nestola, Y., Cavozzi, C., Argnani, A., Meda, M., & Salvi, F. (2013). Impact of lithospheric heterogeneities on continental rifting evolution: Constraints from analogue modelling on South Atlantic margins. Tectonophysics, 608, 30–50. https://doi.org/10.1016/j.tecto.2013.09.026
10.1016/j.tecto.2013.09.026
Cites
Colletta, B., Letouzey, J., Pinedo, R., Ballard, J. F., & Balé, P. (1991). Computerized X-ray tomography analysis of sandbox models: Examples of thin-skinned thrust systems. Geology, 19(11), 1063. https://doi.org/10.1130/0091-7613(1991)019<1063:cxrtao>2.3.co;2
10.1130/0091-7613(1991)019%3C1063:CXRTAO%3E2.3.CO;2
Cites
Coward, M. P., & Trudgill, B. (1989). Basin development and basement structure of the Celtic Sea basins (SW Britain). Bulletin de La Société Géologique de France, V(3), 423–436. https://doi.org/10.2113/gssgfbull.v.3.423
10.2113/gssgfbull.V.3.423
Cites
Fedorik, J., Zwaan, F., Schreurs, G., Toscani, G., Bonini, L., & Seno, S. (2019). The interaction between strike-slip dominated fault zones and thrust belt structures: Insights from 4D analogue models. Journal of Structural Geology, 122, 89–105. https://doi.org/10.1016/j.jsg.2019.02.010
10.1016/j.jsg.2019.02.010
Cites
Klinkmüller, M., Schreurs, G., Rosenau, M., & Kemnitz, H. (2016). Properties of granular analogue model materials: A community wide survey. Tectonophysics, 684, 23–38. https://doi.org/10.1016/j.tecto.2016.01.017
10.1016/j.tecto.2016.01.017
Cites
Evolution of Salt-Related Structures in Compressional Settings. (1995). Salt Tectonics, 41–60. https://doi.org/10.1306/m65604c3
10.1306/M65604C3
Cites
Luth, S., Willingshofer, E., Sokoutis, D., & Cloetingh, S. (2010). Analogue modelling of continental collision: Influence of plate coupling on mantle lithosphere subduction, crustal deformation and surface topography. Tectonophysics, 484(1–4), 87–102. https://doi.org/10.1016/j.tecto.2009.08.043
10.1016/j.tecto.2009.08.043
Cites
Mart, Y., & Dauteuil, O. (2000). Analogue experiments of propagation of oblique rifts. Tectonophysics, 316(1–2), 121–132. https://doi.org/10.1016/s0040-1951(99)00231-0
10.1016/S0040-1951(99)00231-0
Cites
Molnar, N. E., Cruden, A. R., & Betts, P. G. (2018). Unzipping continents and the birth of microcontinents. Geology, 46(5), 451–454. https://doi.org/10.1130/g40021.1
10.1130/G40021.1
Cites
Molnar, N. E., Cruden, A. R., & Betts, P. G. (2019). Interactions between propagating rifts and linear weaknesses in the lower crust. Geosphere, 15(5), 1617–1640. https://doi.org/10.1130/ges02119.1
10.1130/GES02119.1
Cites
Molnar, N., Cruden, A., & Betts, P. (2020). The role of inherited crustal and lithospheric architecture during the evolution of the Red Sea: Insights from three dimensional analogue experiments. Earth and Planetary Science Letters, 544, 116377. https://doi.org/10.1016/j.epsl.2020.116377
10.1016/j.epsl.2020.116377
Cites
Nestola, Y., Storti, F., Bedogni, E., & Cavozzi, C. (2013). Shape evolution and finite deformation pattern in analog experiments of lithosphere necking. Geophysical Research Letters, 40(19), 5052–5057. Portico. https://doi.org/10.1002/grl.50978
10.1002/grl.50978
Cites
Nestola, Y., Storti, F., & Cavozzi, C. (2015). Strain rate‐dependent lithosphere rifting and necking architectures in analog experiments. Journal of Geophysical Research: Solid Earth, 120(1), 584–594. Portico. https://doi.org/10.1002/2014jb011623
10.1002/2014JB011623
Cites
Panien, M., Schreurs, G., & Pfiffner, A. (2005). Sandbox experiments on basin inversion: testing the influence of basin orientation and basin fill. Journal of Structural Geology, 27(3), 433–445. https://doi.org/10.1016/j.jsg.2004.11.001
10.1016/j.jsg.2004.11.001
Cites
Panien, M., Schreurs, G., & Pfiffner, A. (2006). Mechanical behaviour of granular materials used in analogue modelling: insights from grain characterisation, ring-shear tests and analogue experiments. Journal of Structural Geology, 28(9), 1710–1724. https://doi.org/10.1016/j.jsg.2006.05.004
10.1016/j.jsg.2006.05.004
Cites
Cites
Samsu, A., Cruden, A. R., Molnar, N. E., & Weinberg, R. F. (2021). Inheritance of Penetrative Basement Anisotropies by Extension‐Oblique Faults: Insights From Analogue Experiments. Tectonics, 40(5). Portico. https://doi.org/10.1029/2020tc006596
10.1029/2020TC006596
Cites
Sassi, W., Colletta, B., Balé, P., & Paquereau, T. (1993). Modelling of structural complexity in sedimentary basins: The role of pre-existing faults in thrust tectonics. Tectonophysics, 226(1–4), 97–112. https://doi.org/10.1016/0040-1951(93)90113-x
10.1016/0040-1951(93)90113-X
Cites
Schori, M., Zwaan, F., Schreurs, G., & Mosar, J. (2021). Pre-existing Basement Faults Controlling Deformation in the Jura Mountains Fold-and-Thrust Belt: Insights from Analogue Models. Tectonophysics, 814, 228980. https://doi.org/10.1016/j.tecto.2021.228980
10.1016/j.tecto.2021.228980
Cites
Schmid, T. C., Schreurs, G., & Adam, J. (2022). Characteristics of continental rifting in rotational systems: New findings from spatiotemporal high resolution quantified crustal scale analogue models. Tectonophysics, 822, 229174. https://doi.org/10.1016/j.tecto.2021.229174
10.1016/j.tecto.2021.229174
Cites
Schmid, T. C., Schreurs, G., & Adam, J. (2022). Rotational Extension Promotes Coeval Upper Crustal Brittle Faulting and Deep‐Seated Rift‐Axis Parallel Flow: Dynamic Coupling Processes Inferred From Analog Model Experiments. Journal of Geophysical Research: Solid Earth, 127(8). Portico. https://doi.org/10.1029/2022jb024434
10.1029/2022JB024434
Cites
Schmid, T., Schreurs, G., Warsitzka, M., & Rosenau, M. (2020). <i>Effect of sieving height on density and friction of brittle analogue material: Ring-shear test data of quarz sand used for analogue experiments in the Tectonic Modelling Lab of the University of Bern</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2020.006
10.5880/fidgeo.2020.006
Cites
Schmid, T., Zwaan, F., Corbi, F., Funiciello, F., & Schreurs, G. (2022). <i>Rheology of glucose syrup from the Tectonic Modelling Lab (TecLab) of the University of Bern (CH)</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2022.030
10.5880/fidgeo.2022.030
Cites
Schreurs, G., Buiter, S. J. H., Boutelier, J., Burberry, C., Callot, J.-P., Cavozzi, C., Cerca, M., Chen, J.-H., Cristallini, E., Cruden, A. R., Cruz, L., Daniel, J.-M., Da Poian, G., Garcia, V. H., Gomes, C. J. S., Grall, C., Guillot, Y., Guzmán, C., Hidayah, T. N., … Yamada, Y. (2016). Benchmarking analogue models of brittle thrust wedges. Journal of Structural Geology, 92, 116–139. https://doi.org/10.1016/j.jsg.2016.03.005
10.1016/j.jsg.2016.03.005
Cites
Schreurs, G., Buiter, S. J. H., Boutelier, D., Corti, G., Costa, E., Cruden, A. R., Daniel, J.-M., Hoth, S., Koyi, H. A., Kukowski, N., Lohrmann, J., Ravaglia, A., Schlische, R. W., Withjack, M. O., Yamada, Y., Cavozzi, C., Del Ventisette, C., Brady, J. A. E., Hoffmann-Rothe, A., … Nilforoushan, F. (2006). Analogue benchmarks of shortening and extension experiments. Geological Society, London, Special Publications, 253(1), 1–27. https://doi.org/10.1144/gsl.sp.2006.253.01.01
10.1144/GSL.SP.2006.253.01.01
Cites
Schreurs, G., & Colletta, B. (1998). Analogue modelling of faulting in zones of continental transpression and transtension. Geological Society, London, Special Publications, 135(1), 59–79. https://doi.org/10.1144/gsl.sp.1998.135.01.05
10.1144/GSL.SP.1998.135.01.05
Cites
Schreurs, G., & Colletta, B. (2002). Analogue modelling of continental transpression. Journal of the Virtual Explorer, 07. https://doi.org/10.3809/jvirtex.2002.00040
10.3809/jvirtex.2002.00040
Cites
Schreurs, G., Hänni, R., & Vock, P. (2002). The influence of brittle-viscous multilayers on faulting during rifting: an analogue modelling approach. Journal of the Virtual Explorer, 07. https://doi.org/10.3809/jvirtex.2002.00042
10.3809/jvirtex.2002.00042
Cites
Schreurs, G., Hänni, R., Panien, M., & Vock, P. (2003). Analysis of analogue models by helical X-ray computed tomography. Geological Society, London, Special Publications, 215(1), 213–223. https://doi.org/10.1144/gsl.sp.2003.215.01.20
10.1144/GSL.SP.2003.215.01.20
Cites
Schreurs, G., Hänni, R., & Vock, P. (2002). Analogue modelling of transfer zones in fold-and-thrust belts: a 4-D analysis. Journal of the Virtual Explorer, 07. https://doi.org/10.3809/jvirtex.2002.00047
10.3809/jvirtex.2002.00047
Cites
Sokoutis, D., & Willingshofer, E. (2011). Decoupling during continental collision and intra-plate deformation. Earth and Planetary Science Letters, 305(3–4), 435–444. https://doi.org/10.1016/j.epsl.2011.03.028
10.1016/j.epsl.2011.03.028
Cites
Sun, Z., Zhong, Z., Keep, M., Zhou, D., Cai, D., Li, X., Wu, S., & Jiang, J. (2009). 3D analogue modeling of the South China Sea: A discussion on breakup pattern. Journal of Asian Earth Sciences, 34(4), 544–556. https://doi.org/10.1016/j.jseaes.2008.09.002
10.1016/j.jseaes.2008.09.002
Cites
Warsitzka, M., Ge, Z., Schönebeck, J.-M., Pohlenz, A., & Kukowski, N. (2019). <i>Ring-shear test data of foam glass beads used for analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam and the Institute of Geosciences, Friedrich Schiller University Jena</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2019.002
10.5880/GFZ.4.1.2019.002
Cites
Willingshofer, E., & Sokoutis, D. (2009). Decoupling along plate boundaries: Key variable controlling the mode of deformation and the geometry of collisional mountain belts. Geology, 37(1), 39–42. https://doi.org/10.1130/g25321a.1
10.1130/G25321A.1
Cites
Willingshofer, E., Sokoutis, D., Luth, S. W., Beekman, F., & Cloetingh, S. (2013). Subduction and deformation of the continental lithosphere in response to plate and crust-mantle coupling. Geology, 41(12), 1239–1242. https://doi.org/10.1130/g34815.1
10.1130/G34815.1
Cites
Willingshofer, E., Sokoutis, D., Beekman, F., Schönebeck, J.-M., Warsitzka, M., & Rosenau, M. (2018). <i>Ring shear test data of feldspar sand and quartz sand used in the Tectonic Laboratory (TecLab) at Utrecht University for experimental Earth Science applications</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2018.072
10.5880/fidgeo.2018.072
Cites
Cites
Zwaan, F., & Schreurs, G. (2015). Effects of transtension on continental rift interaction: a 4D analogue modeling study. Geotectonic Research, 97(1), 116–119. https://doi.org/10.1127/1864-5658/2015-44
10.1127/1864-5658/2015-44
Cites
Zwaan, F., & Schreurs, G. (2017). How oblique extension and structural inheritance influence rift segment interaction: Insights from 4D analog models. Interpretation, 5(1), SD119–SD138. https://doi.org/10.1190/int-2016-0063.1
10.1190/INT-2016-0063.1
Cites
Zwaan, F., & Schreurs, G. (2023). <i>Digital image correlation (DIC) and X-Ray CT analyses of lithospheric-scale analogue models of continental rifting</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2023.006
10.5880/fidgeo.2023.006
Cites
Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., & Schreurs, G. (2021). Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models. Solid Earth, 12(7), 1473–1495. https://doi.org/10.5194/se-12-1473-2021
10.5194/se-12-1473-2021
Cites
Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., & Schreurs, G. (2021). Competition between 3D structural inheritance and kinematics during rifting: Insights from analogue models. Basin Research, 34(2), 824–854. Portico. https://doi.org/10.1111/bre.12642
10.1111/bre.12642
Cites
Zwaan, F., Corti, G., Keir, D., & Sani, F. (2020). Analogue modelling of marginal flexure in Afar, East Africa: Implications for passive margin formation. Tectonophysics, 796, 228595. https://doi.org/10.1016/j.tecto.2020.228595
10.1016/j.tecto.2020.228595
Cites
Zwaan, F., Schreurs, G., & Adam, J. (2018). Effects of sedimentation on rift segment evolution and rift interaction in orthogonal and oblique extensional settings: Insights from analogue models analysed with 4D X-ray computed tomography and digital volume correlation techniques. Global and Planetary Change, 171, 110–133. https://doi.org/10.1016/j.gloplacha.2017.11.002
10.1016/j.gloplacha.2017.11.002
Cites
Zwaan, F., Schreurs, G., & Buiter, S. J. H. (2019). A systematic comparison of experimental set-ups for modelling extensional tectonics. Solid Earth, 10(4), 1063–1097. https://doi.org/10.5194/se-10-1063-2019
10.5194/se-10-1063-2019
Cites
Zwaan, F., Schreurs, G., Gentzmann, R., Warsitzka, M., & Rosenau, M. (2018). <i>Ring-shear test data of quartz sand from the Tectonic Modelling Lab of the University of Bern (CH)</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2018.028
10.5880/fidgeo.2018.028
Cites
Zwaan, F., Schreurs, G., Naliboff, J., & Buiter, S. J. H. (2016). Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models. Tectonophysics, 693, 239–260. https://doi.org/10.1016/j.tecto.2016.02.036
10.1016/j.tecto.2016.02.036
Cites
Zwaan, F., Schreurs, G., Ritter, M., Santimano, T., & Rosenau, M. (2018). <i>Rheology of PDMS-corundum sand mixtures from the Tectonic Modelling Lab of the University of Bern (CH)</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2018.023
10.5880/fidgeo.2018.023
Cites
Zwaan, F., Schreurs, G., & Rosenau, M. (2020). Rift propagation in rotational versus orthogonal extension: Insights from 4D analogue models. Journal of Structural Geology, 135, 103946. https://doi.org/10.1016/j.jsg.2019.103946
10.1016/j.jsg.2019.103946
Cites
Zwaan, F., Schreurs, G., Rudolf, M., & Rosenau, M. (2022). <i>Ring-shear test data of feldspar sand FS900S used in the Tectonic Modelling Laboratory at the University of Bern (Switzerland)</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2022.008
10.5880/fidgeo.2022.008
Cites
Contact
Zwaan, Frank
frank.zwaan@gfz-potsdam.de
GFZ German Research Centre for Geosciences, potsdam, Germany
Citiation
Zwaan, F., & Schreurs, G. (2023). A novel method for analogue modelling of lithospheric-scale rifting, monitored through X-Ray CT-scanning, at the University of Bern Tectonic Modelling Laboratory (Switzerland). GFZ Data Services. https://doi.org/10.5880/FIDGEO.2023.005