Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

A novel method for analogue modelling of lithospheric-scale rifting, monitored through X-Ray CT-scanning, at the University of Bern Tectonic Modelling Laboratory (Switzerland)

Zwaan, Frank | Schreurs, Guido

GFZ Data Services

(2023)

This data set is a description of a novel analogue modelling method used to run lithospheric-scale tectonic models, and to uniquely monitor these models through X-Ray CT-scanning techniques at the Tectonic Modelling Lab of the University of Bern (Switzerland). It includes information on the model set-up and model materials, and includes a step-by-step description of the general modelling procedure. A first application of this novel procedure, for the simulation of lithospheric scale rifting processes can be found in Zwaan & Schreurs (2023a) in Tectonics, with supplementary data publicly available via GFZ Data Services (Zwaan & Schreurs 2023b). The results of this work prove the feasibility of the method, and opens the door to a broad variety of new tectonic modelling studies.

Keywords


Originally assigned keywords
analogue modelling
CTscanning
EPOS
multiscale laboratories
analogue models of geologic processes
analogue modelling results
PLATE TECTONICS
RIFTING

Corresponding MSL vocabulary keywords
analogue modelling
X-ray tomography
rifting

MSL enriched keywords
Apparatus
analogue modelling
Apparatus
X-ray tomography
tectonic plate boundary
divergent tectonic plate boundary
rifting

MSL original sub domains

analogue modelling of geologic processes

MSL enriched sub domains i

analogue modelling of geologic processes
microscopy and tomography


Source publisher

GFZ Data Services


DOI

10.5880/fidgeo.2023.005


Authors

Zwaan, Frank

0000-0001-8226-2132

Institute of Geological Sciences of the University of Bern, Switzerland

Schreurs, Guido

0000-0002-4544-7514

Institute of Geological Sciences of the University of Bern, Switzerland


References

Zwaan, F., & Schreurs, G. (2023). Analog Models of Lithospheric‐Scale Rifting Monitored in an X‐Ray CT Scanner. Tectonics, 42(3). Portico. https://doi.org/10.1029/2022tc007291

10.1029/2022TC007291

IsSupplementTo

Adam, J., Klinkmüller, M., Schreurs, G., & Wieneke, B. (2013). Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation: Integration of X-ray computed tomography and digital volume correlation techniques. Journal of Structural Geology, 55, 127–149. https://doi.org/10.1016/j.jsg.2013.07.011

10.1016/j.jsg.2013.07.011

Cites

Allemand, P., & Brun, J.-P. (1991). Width of continental rifts and rheological layering of the lithosphere. Tectonophysics, 188(1–2), 63–69. https://doi.org/10.1016/0040-1951(91)90314-i

10.1016/0040-1951(91)90314-I

Cites

Alonso-Henar, J., Schreurs, G., Martinez-Díaz, J. J., Álvarez-Gómez, J. A., & Villamor, P. (2015). Neotectonic development of the El Salvador Fault Zone and implications for deformation in the Central America Volcanic Arc: Insights from 4-D analog modeling experiments. Tectonics, 34(1), 133–151. Portico. https://doi.org/10.1002/2014tc003723

10.1002/2014TC003723

Cites

Autin, J., Bellahsen, N., Husson, L., Beslier, M.-O., Leroy, S., & d’Acremont, E. (2010). Analog models of oblique rifting in a cold lithosphere. Tectonics, 29(6), n/a-n/a. https://doi.org/10.1029/2010tc002671

10.1029/2010TC002671

Cites

Autin, J., Bellahsen, N., Leroy, S., Husson, L., Beslier, M.-O., & d’Acremont, E. (2013). The role of structural inheritance in oblique rifting: Insights from analogue models and application to the Gulf of Aden. Tectonophysics, 607, 51–64. https://doi.org/10.1016/j.tecto.2013.05.041

10.1016/j.tecto.2013.05.041

Cites

Benes, V., & Davy, P. (1996). Modes of continental lithospheric extension: experimental verification of strain localization processes. Tectonophysics, 254(1–2), 69–87. https://doi.org/10.1016/0040-1951(95)00076-3

10.1016/0040-1951(95)00076-3

Cites

Benes, V., & Scott, S. D. (1996). Oblique rifting in the Havre Trough and its propagation into the continental margin of New Zealand: Comparison with analogue experiments. Marine Geophysical Researches, 18(2–4), 189–201. https://doi.org/10.1007/bf00286077

10.1007/BF00286077

Cites

Beniest, A., Willingshofer, E., Sokoutis, D., & Sassi, W. (2018). Extending Continental Lithosphere With Lateral Strength Variations: Effects on Deformation Localization and Margin Geometries. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00148

10.3389/feart.2018.00148

Cites

Cites

Boutelier, D., Schrank, C., & Regenauer-Lieb, K. (2019). 2-D finite displacements and strain from particle imaging velocimetry (PIV) analysis of tectonic analogue models with TecPIV. Solid Earth, 10(4), 1123–1139. https://doi.org/10.5194/se-10-1123-2019

10.5194/se-10-1123-2019

Cites

Brun, J.-P. (2002). Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications, 200(1), 355–370. https://doi.org/10.1144/gsl.sp.2001.200.01.20

10.1144/GSL.SP.2001.200.01.20

Cites

Brun, J. P., & Beslier, M. O. (1996). Mantle exhumation at passive margins. Earth and Planetary Science Letters, 142(1–2), 161–173. https://doi.org/10.1016/0012-821x(96)00080-5

10.1016/0012-821X(96)00080-5

Cites

Calignano, E., Sokoutis, D., Willingshofer, E., Gueydan, F., & Cloetingh, S. (2015). Asymmetric vs. symmetric deep lithospheric architecture of intra-plate continental orogens. Earth and Planetary Science Letters, 424, 38–50. https://doi.org/10.1016/j.epsl.2015.05.022

10.1016/j.epsl.2015.05.022

Cites

Calignano, E., Sokoutis, D., Willingshofer, E., Brun, J.-P., Gueydan, F., & Cloetingh, S. (2017). Oblique contractional reactivation of inherited heterogeneities: Cause for arcuate orogens. Tectonics, 36(3), 542–558. Portico. https://doi.org/10.1002/2016tc004424

10.1002/2016TC004424

Cites

Cappelletti, A., Tsikalas, F., Nestola, Y., Cavozzi, C., Argnani, A., Meda, M., & Salvi, F. (2013). Impact of lithospheric heterogeneities on continental rifting evolution: Constraints from analogue modelling on South Atlantic margins. Tectonophysics, 608, 30–50. https://doi.org/10.1016/j.tecto.2013.09.026

10.1016/j.tecto.2013.09.026

Cites

Colletta, B., Letouzey, J., Pinedo, R., Ballard, J. F., & Balé, P. (1991). Computerized X-ray tomography analysis of sandbox models: Examples of thin-skinned thrust systems. Geology, 19(11), 1063. https://doi.org/10.1130/0091-7613(1991)019<1063:cxrtao>2.3.co;2

10.1130/0091-7613(1991)019%3C1063:CXRTAO%3E2.3.CO;2

Cites

Coward, M. P., & Trudgill, B. (1989). Basin development and basement structure of the Celtic Sea basins (SW Britain). Bulletin de La Société Géologique de France, V(3), 423–436. https://doi.org/10.2113/gssgfbull.v.3.423

10.2113/gssgfbull.V.3.423

Cites

Fedorik, J., Zwaan, F., Schreurs, G., Toscani, G., Bonini, L., & Seno, S. (2019). The interaction between strike-slip dominated fault zones and thrust belt structures: Insights from 4D analogue models. Journal of Structural Geology, 122, 89–105. https://doi.org/10.1016/j.jsg.2019.02.010

10.1016/j.jsg.2019.02.010

Cites

Klinkmüller, M., Schreurs, G., Rosenau, M., & Kemnitz, H. (2016). Properties of granular analogue model materials: A community wide survey. Tectonophysics, 684, 23–38. https://doi.org/10.1016/j.tecto.2016.01.017

10.1016/j.tecto.2016.01.017

Cites

Evolution of Salt-Related Structures in Compressional Settings. (1995). Salt Tectonics, 41–60. https://doi.org/10.1306/m65604c3

10.1306/M65604C3

Cites

Luth, S., Willingshofer, E., Sokoutis, D., & Cloetingh, S. (2010). Analogue modelling of continental collision: Influence of plate coupling on mantle lithosphere subduction, crustal deformation and surface topography. Tectonophysics, 484(1–4), 87–102. https://doi.org/10.1016/j.tecto.2009.08.043

10.1016/j.tecto.2009.08.043

Cites

Mart, Y., & Dauteuil, O. (2000). Analogue experiments of propagation of oblique rifts. Tectonophysics, 316(1–2), 121–132. https://doi.org/10.1016/s0040-1951(99)00231-0

10.1016/S0040-1951(99)00231-0

Cites

Molnar, N. E., Cruden, A. R., & Betts, P. G. (2018). Unzipping continents and the birth of microcontinents. Geology, 46(5), 451–454. https://doi.org/10.1130/g40021.1

10.1130/G40021.1

Cites

Molnar, N. E., Cruden, A. R., & Betts, P. G. (2019). Interactions between propagating rifts and linear weaknesses in the lower crust. Geosphere, 15(5), 1617–1640. https://doi.org/10.1130/ges02119.1

10.1130/GES02119.1

Cites

Molnar, N., Cruden, A., & Betts, P. (2020). The role of inherited crustal and lithospheric architecture during the evolution of the Red Sea: Insights from three dimensional analogue experiments. Earth and Planetary Science Letters, 544, 116377. https://doi.org/10.1016/j.epsl.2020.116377

10.1016/j.epsl.2020.116377

Cites

Nestola, Y., Storti, F., Bedogni, E., & Cavozzi, C. (2013). Shape evolution and finite deformation pattern in analog experiments of lithosphere necking. Geophysical Research Letters, 40(19), 5052–5057. Portico. https://doi.org/10.1002/grl.50978

10.1002/grl.50978

Cites

Nestola, Y., Storti, F., & Cavozzi, C. (2015). Strain rate‐dependent lithosphere rifting and necking architectures in analog experiments. Journal of Geophysical Research: Solid Earth, 120(1), 584–594. Portico. https://doi.org/10.1002/2014jb011623

10.1002/2014JB011623

Cites

Panien, M., Schreurs, G., & Pfiffner, A. (2005). Sandbox experiments on basin inversion: testing the influence of basin orientation and basin fill. Journal of Structural Geology, 27(3), 433–445. https://doi.org/10.1016/j.jsg.2004.11.001

10.1016/j.jsg.2004.11.001

Cites

Panien, M., Schreurs, G., & Pfiffner, A. (2006). Mechanical behaviour of granular materials used in analogue modelling: insights from grain characterisation, ring-shear tests and analogue experiments. Journal of Structural Geology, 28(9), 1710–1724. https://doi.org/10.1016/j.jsg.2006.05.004

10.1016/j.jsg.2006.05.004

Cites

Cites

Samsu, A., Cruden, A. R., Molnar, N. E., & Weinberg, R. F. (2021). Inheritance of Penetrative Basement Anisotropies by Extension‐Oblique Faults: Insights From Analogue Experiments. Tectonics, 40(5). Portico. https://doi.org/10.1029/2020tc006596

10.1029/2020TC006596

Cites

Sassi, W., Colletta, B., Balé, P., & Paquereau, T. (1993). Modelling of structural complexity in sedimentary basins: The role of pre-existing faults in thrust tectonics. Tectonophysics, 226(1–4), 97–112. https://doi.org/10.1016/0040-1951(93)90113-x

10.1016/0040-1951(93)90113-X

Cites

Schori, M., Zwaan, F., Schreurs, G., & Mosar, J. (2021). Pre-existing Basement Faults Controlling Deformation in the Jura Mountains Fold-and-Thrust Belt: Insights from Analogue Models. Tectonophysics, 814, 228980. https://doi.org/10.1016/j.tecto.2021.228980

10.1016/j.tecto.2021.228980

Cites

Schmid, T. C., Schreurs, G., & Adam, J. (2022). Characteristics of continental rifting in rotational systems: New findings from spatiotemporal high resolution quantified crustal scale analogue models. Tectonophysics, 822, 229174. https://doi.org/10.1016/j.tecto.2021.229174

10.1016/j.tecto.2021.229174

Cites

Schmid, T. C., Schreurs, G., & Adam, J. (2022). Rotational Extension Promotes Coeval Upper Crustal Brittle Faulting and Deep‐Seated Rift‐Axis Parallel Flow: Dynamic Coupling Processes Inferred From Analog Model Experiments. Journal of Geophysical Research: Solid Earth, 127(8). Portico. https://doi.org/10.1029/2022jb024434

10.1029/2022JB024434

Cites

Schmid, T., Schreurs, G., Warsitzka, M., &amp; Rosenau, M. (2020). <i>Effect of sieving height on density and friction of brittle analogue material: Ring-shear test data of quarz sand used for analogue experiments in the Tectonic Modelling Lab of the University of Bern</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2020.006

10.5880/fidgeo.2020.006

Cites

Schmid, T., Zwaan, F., Corbi, F., Funiciello, F., &amp; Schreurs, G. (2022). <i>Rheology of glucose syrup from the Tectonic Modelling Lab (TecLab) of the University of Bern (CH)</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2022.030

10.5880/fidgeo.2022.030

Cites

Schreurs, G., Buiter, S. J. H., Boutelier, J., Burberry, C., Callot, J.-P., Cavozzi, C., Cerca, M., Chen, J.-H., Cristallini, E., Cruden, A. R., Cruz, L., Daniel, J.-M., Da Poian, G., Garcia, V. H., Gomes, C. J. S., Grall, C., Guillot, Y., Guzmán, C., Hidayah, T. N., … Yamada, Y. (2016). Benchmarking analogue models of brittle thrust wedges. Journal of Structural Geology, 92, 116–139. https://doi.org/10.1016/j.jsg.2016.03.005

10.1016/j.jsg.2016.03.005

Cites

Schreurs, G., Buiter, S. J. H., Boutelier, D., Corti, G., Costa, E., Cruden, A. R., Daniel, J.-M., Hoth, S., Koyi, H. A., Kukowski, N., Lohrmann, J., Ravaglia, A., Schlische, R. W., Withjack, M. O., Yamada, Y., Cavozzi, C., Del Ventisette, C., Brady, J. A. E., Hoffmann-Rothe, A., … Nilforoushan, F. (2006). Analogue benchmarks of shortening and extension experiments. Geological Society, London, Special Publications, 253(1), 1–27. https://doi.org/10.1144/gsl.sp.2006.253.01.01

10.1144/GSL.SP.2006.253.01.01

Cites

Schreurs, G., & Colletta, B. (1998). Analogue modelling of faulting in zones of continental transpression and transtension. Geological Society, London, Special Publications, 135(1), 59–79. https://doi.org/10.1144/gsl.sp.1998.135.01.05

10.1144/GSL.SP.1998.135.01.05

Cites

Schreurs, G., & Colletta, B. (2002). Analogue modelling of continental transpression. Journal of the Virtual Explorer, 07. https://doi.org/10.3809/jvirtex.2002.00040

10.3809/jvirtex.2002.00040

Cites

Schreurs, G., Hänni, R., & Vock, P. (2002). The influence of brittle-viscous multilayers on faulting during rifting: an analogue modelling approach. Journal of the Virtual Explorer, 07. https://doi.org/10.3809/jvirtex.2002.00042

10.3809/jvirtex.2002.00042

Cites

Schreurs, G., Hänni, R., Panien, M., & Vock, P. (2003). Analysis of analogue models by helical X-ray computed tomography. Geological Society, London, Special Publications, 215(1), 213–223. https://doi.org/10.1144/gsl.sp.2003.215.01.20

10.1144/GSL.SP.2003.215.01.20

Cites

Schreurs, G., Hänni, R., & Vock, P. (2002). Analogue modelling of transfer zones in fold-and-thrust belts: a 4-D analysis. Journal of the Virtual Explorer, 07. https://doi.org/10.3809/jvirtex.2002.00047

10.3809/jvirtex.2002.00047

Cites

Sokoutis, D., & Willingshofer, E. (2011). Decoupling during continental collision and intra-plate deformation. Earth and Planetary Science Letters, 305(3–4), 435–444. https://doi.org/10.1016/j.epsl.2011.03.028

10.1016/j.epsl.2011.03.028

Cites

Sun, Z., Zhong, Z., Keep, M., Zhou, D., Cai, D., Li, X., Wu, S., & Jiang, J. (2009). 3D analogue modeling of the South China Sea: A discussion on breakup pattern. Journal of Asian Earth Sciences, 34(4), 544–556. https://doi.org/10.1016/j.jseaes.2008.09.002

10.1016/j.jseaes.2008.09.002

Cites

Warsitzka, M., Ge, Z., Schönebeck, J.-M., Pohlenz, A., &amp; Kukowski, N. (2019). <i>Ring-shear test data of foam glass beads used for analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam and the Institute of Geosciences, Friedrich Schiller University Jena</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2019.002

10.5880/GFZ.4.1.2019.002

Cites

Willingshofer, E., & Sokoutis, D. (2009). Decoupling along plate boundaries: Key variable controlling the mode of deformation and the geometry of collisional mountain belts. Geology, 37(1), 39–42. https://doi.org/10.1130/g25321a.1

10.1130/G25321A.1

Cites

Willingshofer, E., Sokoutis, D., Luth, S. W., Beekman, F., & Cloetingh, S. (2013). Subduction and deformation of the continental lithosphere in response to plate and crust-mantle coupling. Geology, 41(12), 1239–1242. https://doi.org/10.1130/g34815.1

10.1130/G34815.1

Cites

Willingshofer, E., Sokoutis, D., Beekman, F., Schönebeck, J.-M., Warsitzka, M., &amp; Rosenau, M. (2018). <i>Ring shear test data of feldspar sand and quartz sand used in the Tectonic Laboratory (TecLab) at Utrecht University for experimental Earth Science applications</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2018.072

10.5880/fidgeo.2018.072

Cites

Cites

Zwaan, F., & Schreurs, G. (2015). Effects of transtension on continental rift interaction: a 4D analogue modeling study. Geotectonic Research, 97(1), 116–119. https://doi.org/10.1127/1864-5658/2015-44

10.1127/1864-5658/2015-44

Cites

Zwaan, F., & Schreurs, G. (2017). How oblique extension and structural inheritance influence rift segment interaction: Insights from 4D analog models. Interpretation, 5(1), SD119–SD138. https://doi.org/10.1190/int-2016-0063.1

10.1190/INT-2016-0063.1

Cites

Zwaan, F., &amp; Schreurs, G. (2023). <i>Digital image correlation (DIC) and X-Ray CT analyses of lithospheric-scale analogue models of continental rifting</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2023.006

10.5880/fidgeo.2023.006

Cites

Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., & Schreurs, G. (2021). Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models. Solid Earth, 12(7), 1473–1495. https://doi.org/10.5194/se-12-1473-2021

10.5194/se-12-1473-2021

Cites

Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., & Schreurs, G. (2021). Competition between 3D structural inheritance and kinematics during rifting: Insights from analogue models. Basin Research, 34(2), 824–854. Portico. https://doi.org/10.1111/bre.12642

10.1111/bre.12642

Cites

Zwaan, F., Corti, G., Keir, D., & Sani, F. (2020). Analogue modelling of marginal flexure in Afar, East Africa: Implications for passive margin formation. Tectonophysics, 796, 228595. https://doi.org/10.1016/j.tecto.2020.228595

10.1016/j.tecto.2020.228595

Cites

Zwaan, F., Schreurs, G., & Adam, J. (2018). Effects of sedimentation on rift segment evolution and rift interaction in orthogonal and oblique extensional settings: Insights from analogue models analysed with 4D X-ray computed tomography and digital volume correlation techniques. Global and Planetary Change, 171, 110–133. https://doi.org/10.1016/j.gloplacha.2017.11.002

10.1016/j.gloplacha.2017.11.002

Cites

Zwaan, F., Schreurs, G., & Buiter, S. J. H. (2019). A systematic comparison of experimental set-ups for modelling extensional tectonics. Solid Earth, 10(4), 1063–1097. https://doi.org/10.5194/se-10-1063-2019

10.5194/se-10-1063-2019

Cites

Zwaan, F., Schreurs, G., Gentzmann, R., Warsitzka, M., &amp; Rosenau, M. (2018). <i>Ring-shear test data of quartz sand from the Tectonic Modelling Lab of the University of Bern (CH)</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2018.028

10.5880/fidgeo.2018.028

Cites

Zwaan, F., Schreurs, G., Naliboff, J., & Buiter, S. J. H. (2016). Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models. Tectonophysics, 693, 239–260. https://doi.org/10.1016/j.tecto.2016.02.036

10.1016/j.tecto.2016.02.036

Cites

Zwaan, F., Schreurs, G., Ritter, M., Santimano, T., &amp; Rosenau, M. (2018). <i>Rheology of PDMS-corundum sand mixtures from the Tectonic Modelling Lab of the University of Bern (CH)</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2018.023

10.5880/fidgeo.2018.023

Cites

Zwaan, F., Schreurs, G., & Rosenau, M. (2020). Rift propagation in rotational versus orthogonal extension: Insights from 4D analogue models. Journal of Structural Geology, 135, 103946. https://doi.org/10.1016/j.jsg.2019.103946

10.1016/j.jsg.2019.103946

Cites

Zwaan, F., Schreurs, G., Rudolf, M., &amp; Rosenau, M. (2022). <i>Ring-shear test data of feldspar sand FS900S used in the Tectonic Modelling Laboratory at the University of Bern (Switzerland)</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2022.008

10.5880/fidgeo.2022.008

Cites


Contact

Zwaan, Frank

frank.zwaan@gfz-potsdam.de

GFZ German Research Centre for Geosciences, potsdam, Germany


Citiation

Zwaan, F., & Schreurs, G. (2023). A novel method for analogue modelling of lithospheric-scale rifting, monitored through X-Ray CT-scanning, at the University of Bern Tectonic Modelling Laboratory (Switzerland). GFZ Data Services. https://doi.org/10.5880/FIDGEO.2023.005