A novel method for analogue modelling of lithospheric-scale rifting, monitored through X-Ray CT-scanning, at the University of Bern Tectonic Modelling Laboratory (Switzerland)

Zwaan, Frank; Schreurs, Guido;

2023-01 || GFZ Data Services

This data set is a description of a novel analogue modelling method used to run lithospheric-scale tectonic models, and to uniquely monitor these models through X-Ray CT-scanning techniques at the Tectonic Modelling Lab of the University of Bern (Switzerland). It includes information on the model set-up and model materials, and includes a step-by-step description of the general modelling procedure. A first application of this novel procedure, for the simulation of lithospheric scale rifting processes can be found in Zwaan & Schreurs (2023a) in Tectonics, with supplementary data publicly available via GFZ Data Services (Zwaan & Schreurs 2023b). The results of this work prove the feasibility of the method, and opens the door to a broad variety of new tectonic modelling studies.

Originally assigned keywords

Corresponding MSL vocabulary keywords

MSL enriched keywords

Originally assigned sub domains
  • analogue modelling of geologic processes
MSL enriched sub domains
  • analogue modelling of geologic processes
  • microscopy and tomography
Source http://doi.org/10.5880/fidgeo.2023.005
Source publisher GFZ Data Services
DOI 10.5880/fidgeo.2023.005
License CC BY 4.0
Authors
  • Zwaan, Frank
  • 0000-0001-8226-2132
  • Institute of Geological Sciences of the University of Bern, Switzerland

  • Schreurs, Guido
  • 0000-0002-4544-7514
  • Institute of Geological Sciences of the University of Bern, Switzerland
References
  • Zwaan, F., & Schreurs, G. (2023). Analog Models of Lithospheric‐Scale Rifting Monitored in an X‐Ray CT Scanner. Tectonics, 42(3). Portico. https://doi.org/10.1029/2022tc007291
  • 10.1029/2022TC007291
  • IsSupplementTo

  • Adam, J., Klinkmüller, M., Schreurs, G., & Wieneke, B. (2013). Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation: Integration of X-ray computed tomography and digital volume correlation techniques. Journal of Structural Geology, 55, 127–149. https://doi.org/10.1016/j.jsg.2013.07.011
  • 10.1016/j.jsg.2013.07.011
  • Cites

  • Allemand, P., & Brun, J.-P. (1991). Width of continental rifts and rheological layering of the lithosphere. Tectonophysics, 188(1–2), 63–69. https://doi.org/10.1016/0040-1951(91)90314-i
  • 10.1016/0040-1951(91)90314-I
  • Cites

  • Alonso-Henar, J., Schreurs, G., Martinez-Díaz, J. J., Álvarez-Gómez, J. A., & Villamor, P. (2015). Neotectonic development of the El Salvador Fault Zone and implications for deformation in the Central America Volcanic Arc: Insights from 4-D analog modeling experiments. Tectonics, 34(1), 133–151. Portico. https://doi.org/10.1002/2014tc003723
  • 10.1002/2014TC003723
  • Cites

  • Autin, J., Bellahsen, N., Husson, L., Beslier, M.-O., Leroy, S., & d’Acremont, E. (2010). Analog models of oblique rifting in a cold lithosphere. Tectonics, 29(6), n/a-n/a. https://doi.org/10.1029/2010tc002671
  • 10.1029/2010TC002671
  • Cites

  • Autin, J., Bellahsen, N., Leroy, S., Husson, L., Beslier, M.-O., & d’Acremont, E. (2013). The role of structural inheritance in oblique rifting: Insights from analogue models and application to the Gulf of Aden. Tectonophysics, 607, 51–64. https://doi.org/10.1016/j.tecto.2013.05.041
  • 10.1016/j.tecto.2013.05.041
  • Cites

  • Benes, V., & Davy, P. (1996). Modes of continental lithospheric extension: experimental verification of strain localization processes. Tectonophysics, 254(1–2), 69–87. https://doi.org/10.1016/0040-1951(95)00076-3
  • 10.1016/0040-1951(95)00076-3
  • Cites

  • Benes, V., & Scott, S. D. (1996). Oblique rifting in the Havre Trough and its propagation into the continental margin of New Zealand: Comparison with analogue experiments. Marine Geophysical Researches, 18(2–4), 189–201. https://doi.org/10.1007/bf00286077
  • 10.1007/BF00286077
  • Cites

  • Beniest, A., Willingshofer, E., Sokoutis, D., & Sassi, W. (2018). Extending Continental Lithosphere With Lateral Strength Variations: Effects on Deformation Localization and Margin Geometries. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00148
  • 10.3389/feart.2018.00148
  • Cites

  • Cites

  • Boutelier, D., Schrank, C., & Regenauer-Lieb, K. (2019). 2-D finite displacements and strain from particle imaging velocimetry (PIV) analysis of tectonic analogue models with TecPIV. Solid Earth, 10(4), 1123–1139. https://doi.org/10.5194/se-10-1123-2019
  • 10.5194/se-10-1123-2019
  • Cites

  • Brun, J.-P. (2002). Deformation of the continental lithosphere: Insights from brittle-ductile models. Geological Society, London, Special Publications, 200(1), 355–370. https://doi.org/10.1144/gsl.sp.2001.200.01.20
  • 10.1144/GSL.SP.2001.200.01.20
  • Cites

  • Brun, J. P., & Beslier, M. O. (1996). Mantle exhumation at passive margins. Earth and Planetary Science Letters, 142(1–2), 161–173. https://doi.org/10.1016/0012-821x(96)00080-5
  • 10.1016/0012-821X(96)00080-5
  • Cites

  • Calignano, E., Sokoutis, D., Willingshofer, E., Gueydan, F., & Cloetingh, S. (2015). Asymmetric vs. symmetric deep lithospheric architecture of intra-plate continental orogens. Earth and Planetary Science Letters, 424, 38–50. https://doi.org/10.1016/j.epsl.2015.05.022
  • 10.1016/j.epsl.2015.05.022
  • Cites

  • Calignano, E., Sokoutis, D., Willingshofer, E., Brun, J.-P., Gueydan, F., & Cloetingh, S. (2017). Oblique contractional reactivation of inherited heterogeneities: Cause for arcuate orogens. Tectonics, 36(3), 542–558. Portico. https://doi.org/10.1002/2016tc004424
  • 10.1002/2016TC004424
  • Cites

  • Cappelletti, A., Tsikalas, F., Nestola, Y., Cavozzi, C., Argnani, A., Meda, M., & Salvi, F. (2013). Impact of lithospheric heterogeneities on continental rifting evolution: Constraints from analogue modelling on South Atlantic margins. Tectonophysics, 608, 30–50. https://doi.org/10.1016/j.tecto.2013.09.026
  • 10.1016/j.tecto.2013.09.026
  • Cites

  • Colletta, B., Letouzey, J., Pinedo, R., Ballard, J. F., & Balé, P. (1991). Computerized X-ray tomography analysis of sandbox models: Examples of thin-skinned thrust systems. Geology, 19(11), 1063. https://doi.org/10.1130/0091-7613(1991)019<1063:cxrtao>2.3.co;2
  • 10.1130/0091-7613(1991)019%3C1063:CXRTAO%3E2.3.CO;2
  • Cites

  • Coward, M. P., & Trudgill, B. (1989). Basin development and basement structure of the Celtic Sea basins (SW Britain). Bulletin de La Société Géologique de France, V(3), 423–436. https://doi.org/10.2113/gssgfbull.v.3.423
  • 10.2113/gssgfbull.V.3.423
  • Cites

  • Fedorik, J., Zwaan, F., Schreurs, G., Toscani, G., Bonini, L., & Seno, S. (2019). The interaction between strike-slip dominated fault zones and thrust belt structures: Insights from 4D analogue models. Journal of Structural Geology, 122, 89–105. https://doi.org/10.1016/j.jsg.2019.02.010
  • 10.1016/j.jsg.2019.02.010
  • Cites

  • Klinkmüller, M., Schreurs, G., Rosenau, M., & Kemnitz, H. (2016). Properties of granular analogue model materials: A community wide survey. Tectonophysics, 684, 23–38. https://doi.org/10.1016/j.tecto.2016.01.017
  • 10.1016/j.tecto.2016.01.017
  • Cites

  • Evolution of Salt-Related Structures in Compressional Settings. (1995). Salt Tectonics, 41–60. https://doi.org/10.1306/m65604c3
  • 10.1306/M65604C3
  • Cites

  • Luth, S., Willingshofer, E., Sokoutis, D., & Cloetingh, S. (2010). Analogue modelling of continental collision: Influence of plate coupling on mantle lithosphere subduction, crustal deformation and surface topography. Tectonophysics, 484(1–4), 87–102. https://doi.org/10.1016/j.tecto.2009.08.043
  • 10.1016/j.tecto.2009.08.043
  • Cites

  • Mart, Y., & Dauteuil, O. (2000). Analogue experiments of propagation of oblique rifts. Tectonophysics, 316(1–2), 121–132. https://doi.org/10.1016/s0040-1951(99)00231-0
  • 10.1016/S0040-1951(99)00231-0
  • Cites

  • Molnar, N. E., Cruden, A. R., & Betts, P. G. (2018). Unzipping continents and the birth of microcontinents. Geology, 46(5), 451–454. https://doi.org/10.1130/g40021.1
  • 10.1130/G40021.1
  • Cites

  • Molnar, N. E., Cruden, A. R., & Betts, P. G. (2019). Interactions between propagating rifts and linear weaknesses in the lower crust. Geosphere, 15(5), 1617–1640. https://doi.org/10.1130/ges02119.1
  • 10.1130/GES02119.1
  • Cites

  • Molnar, N., Cruden, A., & Betts, P. (2020). The role of inherited crustal and lithospheric architecture during the evolution of the Red Sea: Insights from three dimensional analogue experiments. Earth and Planetary Science Letters, 544, 116377. https://doi.org/10.1016/j.epsl.2020.116377
  • 10.1016/j.epsl.2020.116377
  • Cites

  • Nestola, Y., Storti, F., Bedogni, E., & Cavozzi, C. (2013). Shape evolution and finite deformation pattern in analog experiments of lithosphere necking. Geophysical Research Letters, 40(19), 5052–5057. Portico. https://doi.org/10.1002/grl.50978
  • 10.1002/grl.50978
  • Cites

  • Nestola, Y., Storti, F., & Cavozzi, C. (2015). Strain rate‐dependent lithosphere rifting and necking architectures in analog experiments. Journal of Geophysical Research: Solid Earth, 120(1), 584–594. Portico. https://doi.org/10.1002/2014jb011623
  • 10.1002/2014JB011623
  • Cites

  • Panien, M., Schreurs, G., & Pfiffner, A. (2005). Sandbox experiments on basin inversion: testing the influence of basin orientation and basin fill. Journal of Structural Geology, 27(3), 433–445. https://doi.org/10.1016/j.jsg.2004.11.001
  • 10.1016/j.jsg.2004.11.001
  • Cites

  • Panien, M., Schreurs, G., & Pfiffner, A. (2006). Mechanical behaviour of granular materials used in analogue modelling: insights from grain characterisation, ring-shear tests and analogue experiments. Journal of Structural Geology, 28(9), 1710–1724. https://doi.org/10.1016/j.jsg.2006.05.004
  • 10.1016/j.jsg.2006.05.004
  • Cites

  • Cites

  • Samsu, A., Cruden, A. R., Molnar, N. E., & Weinberg, R. F. (2021). Inheritance of Penetrative Basement Anisotropies by Extension‐Oblique Faults: Insights From Analogue Experiments. Tectonics, 40(5). Portico. https://doi.org/10.1029/2020tc006596
  • 10.1029/2020TC006596
  • Cites

  • Sassi, W., Colletta, B., Balé, P., & Paquereau, T. (1993). Modelling of structural complexity in sedimentary basins: The role of pre-existing faults in thrust tectonics. Tectonophysics, 226(1–4), 97–112. https://doi.org/10.1016/0040-1951(93)90113-x
  • 10.1016/0040-1951(93)90113-X
  • Cites

  • Schori, M., Zwaan, F., Schreurs, G., & Mosar, J. (2021). Pre-existing Basement Faults Controlling Deformation in the Jura Mountains Fold-and-Thrust Belt: Insights from Analogue Models. Tectonophysics, 814, 228980. https://doi.org/10.1016/j.tecto.2021.228980
  • 10.1016/j.tecto.2021.228980
  • Cites

  • Schmid, T. C., Schreurs, G., & Adam, J. (2022). Characteristics of continental rifting in rotational systems: New findings from spatiotemporal high resolution quantified crustal scale analogue models. Tectonophysics, 822, 229174. https://doi.org/10.1016/j.tecto.2021.229174
  • 10.1016/j.tecto.2021.229174
  • Cites

  • Schmid, T. C., Schreurs, G., & Adam, J. (2022). Rotational Extension Promotes Coeval Upper Crustal Brittle Faulting and Deep‐Seated Rift‐Axis Parallel Flow: Dynamic Coupling Processes Inferred From Analog Model Experiments. Journal of Geophysical Research: Solid Earth, 127(8). Portico. https://doi.org/10.1029/2022jb024434
  • 10.1029/2022JB024434
  • Cites

  • Schmid, T., Schreurs, G., Warsitzka, M., & Rosenau, M. (2020). Effect of sieving height on density and friction of brittle analogue material: Ring-shear test data of quarz sand used for analogue experiments in the Tectonic Modelling Lab of the University of Bern [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2020.006
  • 10.5880/fidgeo.2020.006
  • Cites

  • Schmid, T., Zwaan, F., Corbi, F., Funiciello, F., & Schreurs, G. (2022). Rheology of glucose syrup from the Tectonic Modelling Lab (TecLab) of the University of Bern (CH) [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2022.030
  • 10.5880/fidgeo.2022.030
  • Cites

  • Schreurs, G., Buiter, S. J. H., Boutelier, J., Burberry, C., Callot, J.-P., Cavozzi, C., Cerca, M., Chen, J.-H., Cristallini, E., Cruden, A. R., Cruz, L., Daniel, J.-M., Da Poian, G., Garcia, V. H., Gomes, C. J. S., Grall, C., Guillot, Y., Guzmán, C., Hidayah, T. N., … Yamada, Y. (2016). Benchmarking analogue models of brittle thrust wedges. Journal of Structural Geology, 92, 116–139. https://doi.org/10.1016/j.jsg.2016.03.005
  • 10.1016/j.jsg.2016.03.005
  • Cites

  • Schreurs, G., Buiter, S. J. H., Boutelier, D., Corti, G., Costa, E., Cruden, A. R., Daniel, J.-M., Hoth, S., Koyi, H. A., Kukowski, N., Lohrmann, J., Ravaglia, A., Schlische, R. W., Withjack, M. O., Yamada, Y., Cavozzi, C., Del Ventisette, C., Brady, J. A. E., Hoffmann-Rothe, A., … Nilforoushan, F. (2006). Analogue benchmarks of shortening and extension experiments. Geological Society, London, Special Publications, 253(1), 1–27. https://doi.org/10.1144/gsl.sp.2006.253.01.01
  • 10.1144/GSL.SP.2006.253.01.01
  • Cites

  • Schreurs, G., & Colletta, B. (1998). Analogue modelling of faulting in zones of continental transpression and transtension. Geological Society, London, Special Publications, 135(1), 59–79. https://doi.org/10.1144/gsl.sp.1998.135.01.05
  • 10.1144/GSL.SP.1998.135.01.05
  • Cites

  • Schreurs, G., & Colletta, B. (2002). Analogue modelling of continental transpression. Journal of the Virtual Explorer, 07. https://doi.org/10.3809/jvirtex.2002.00040
  • 10.3809/jvirtex.2002.00040
  • Cites

  • Schreurs, G., Hänni, R., & Vock, P. (2002). The influence of brittle-viscous multilayers on faulting during rifting: an analogue modelling approach. Journal of the Virtual Explorer, 07. https://doi.org/10.3809/jvirtex.2002.00042
  • 10.3809/jvirtex.2002.00042
  • Cites

  • Schreurs, G., Hänni, R., Panien, M., & Vock, P. (2003). Analysis of analogue models by helical X-ray computed tomography. Geological Society, London, Special Publications, 215(1), 213–223. https://doi.org/10.1144/gsl.sp.2003.215.01.20
  • 10.1144/GSL.SP.2003.215.01.20
  • Cites

  • Schreurs, G., Hänni, R., & Vock, P. (2002). Analogue modelling of transfer zones in fold-and-thrust belts: a 4-D analysis. Journal of the Virtual Explorer, 07. https://doi.org/10.3809/jvirtex.2002.00047
  • 10.3809/jvirtex.2002.00047
  • Cites

  • Sokoutis, D., & Willingshofer, E. (2011). Decoupling during continental collision and intra-plate deformation. Earth and Planetary Science Letters, 305(3–4), 435–444. https://doi.org/10.1016/j.epsl.2011.03.028
  • 10.1016/j.epsl.2011.03.028
  • Cites

  • Sun, Z., Zhong, Z., Keep, M., Zhou, D., Cai, D., Li, X., Wu, S., & Jiang, J. (2009). 3D analogue modeling of the South China Sea: A discussion on breakup pattern. Journal of Asian Earth Sciences, 34(4), 544–556. https://doi.org/10.1016/j.jseaes.2008.09.002
  • 10.1016/j.jseaes.2008.09.002
  • Cites

  • Warsitzka, M., Ge, Z., Schönebeck, J.-M., Pohlenz, A., & Kukowski, N. (2019). Ring-shear test data of foam glass beads used for analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam and the Institute of Geosciences, Friedrich Schiller University Jena [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2019.002
  • 10.5880/GFZ.4.1.2019.002
  • Cites

  • Willingshofer, E., & Sokoutis, D. (2009). Decoupling along plate boundaries: Key variable controlling the mode of deformation and the geometry of collisional mountain belts. Geology, 37(1), 39–42. https://doi.org/10.1130/g25321a.1
  • 10.1130/G25321A.1
  • Cites

  • Willingshofer, E., Sokoutis, D., Luth, S. W., Beekman, F., & Cloetingh, S. (2013). Subduction and deformation of the continental lithosphere in response to plate and crust-mantle coupling. Geology, 41(12), 1239–1242. https://doi.org/10.1130/g34815.1
  • 10.1130/G34815.1
  • Cites

  • Willingshofer, E., Sokoutis, D., Beekman, F., Schönebeck, J.-M., Warsitzka, M., & Rosenau, M. (2018). Ring shear test data of feldspar sand and quartz sand used in the Tectonic Laboratory (TecLab) at Utrecht University for experimental Earth Science applications [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2018.072
  • 10.5880/fidgeo.2018.072
  • Cites

  • Cites

  • Zwaan, F., & Schreurs, G. (2015). Effects of transtension on continental rift interaction: a 4D analogue modeling study. Geotectonic Research, 97(1), 116–119. https://doi.org/10.1127/1864-5658/2015-44
  • 10.1127/1864-5658/2015-44
  • Cites

  • Zwaan, F., & Schreurs, G. (2017). How oblique extension and structural inheritance influence rift segment interaction: Insights from 4D analog models. Interpretation, 5(1), SD119–SD138. https://doi.org/10.1190/int-2016-0063.1
  • 10.1190/INT-2016-0063.1
  • Cites

  • Zwaan, F., & Schreurs, G. (2023). Digital image correlation (DIC) and X-Ray CT analyses of lithospheric-scale analogue models of continental rifting [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2023.006
  • 10.5880/fidgeo.2023.006
  • Cites

  • Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., & Schreurs, G. (2021). Complex rift patterns, a result of interacting crustal and mantle weaknesses, or multiphase rifting? Insights from analogue models. Solid Earth, 12(7), 1473–1495. https://doi.org/10.5194/se-12-1473-2021
  • 10.5194/se-12-1473-2021
  • Cites

  • Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., & Schreurs, G. (2021). Competition between 3D structural inheritance and kinematics during rifting: Insights from analogue models. Basin Research, 34(2), 824–854. Portico. https://doi.org/10.1111/bre.12642
  • 10.1111/bre.12642
  • Cites

  • Zwaan, F., Corti, G., Keir, D., & Sani, F. (2020). Analogue modelling of marginal flexure in Afar, East Africa: Implications for passive margin formation. Tectonophysics, 796, 228595. https://doi.org/10.1016/j.tecto.2020.228595
  • 10.1016/j.tecto.2020.228595
  • Cites

  • Zwaan, F., Schreurs, G., & Adam, J. (2018). Effects of sedimentation on rift segment evolution and rift interaction in orthogonal and oblique extensional settings: Insights from analogue models analysed with 4D X-ray computed tomography and digital volume correlation techniques. Global and Planetary Change, 171, 110–133. https://doi.org/10.1016/j.gloplacha.2017.11.002
  • 10.1016/j.gloplacha.2017.11.002
  • Cites

  • Zwaan, F., Schreurs, G., & Buiter, S. J. H. (2019). A systematic comparison of experimental set-ups for modelling extensional tectonics. Solid Earth, 10(4), 1063–1097. https://doi.org/10.5194/se-10-1063-2019
  • 10.5194/se-10-1063-2019
  • Cites

  • Zwaan, F., Schreurs, G., Gentzmann, R., Warsitzka, M., & Rosenau, M. (2018). Ring-shear test data of quartz sand from the Tectonic Modelling Lab of the University of Bern (CH) [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2018.028
  • 10.5880/fidgeo.2018.028
  • Cites

  • Zwaan, F., Schreurs, G., Naliboff, J., & Buiter, S. J. H. (2016). Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models. Tectonophysics, 693, 239–260. https://doi.org/10.1016/j.tecto.2016.02.036
  • 10.1016/j.tecto.2016.02.036
  • Cites

  • Zwaan, F., Schreurs, G., Ritter, M., Santimano, T., & Rosenau, M. (2018). Rheology of PDMS-corundum sand mixtures from the Tectonic Modelling Lab of the University of Bern (CH) [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2018.023
  • 10.5880/fidgeo.2018.023
  • Cites

  • Zwaan, F., Schreurs, G., & Rosenau, M. (2020). Rift propagation in rotational versus orthogonal extension: Insights from 4D analogue models. Journal of Structural Geology, 135, 103946. https://doi.org/10.1016/j.jsg.2019.103946
  • 10.1016/j.jsg.2019.103946
  • Cites

  • Zwaan, F., Schreurs, G., Rudolf, M., & Rosenau, M. (2022). Ring-shear test data of feldspar sand FS900S used in the Tectonic Modelling Laboratory at the University of Bern (Switzerland) [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2022.008
  • 10.5880/fidgeo.2022.008
  • Cites
Contact
  • Zwaan, Frank
  • GFZ German Research Centre for Geosciences, potsdam, Germany
  • frank.zwaan@gfz-potsdam.de
Citation Zwaan, F., & Schreurs, G. (2023). A novel method for analogue modelling of lithospheric-scale rifting, monitored through X-Ray CT-scanning, at the University of Bern Tectonic Modelling Laboratory (Switzerland). GFZ Data Services. https://doi.org/10.5880/FIDGEO.2023.005