Whole-rock geochemistry of rock units from the Pfitscher Joch area, Western Tauern Window

Franz, Gerhard; Berryman, Eleanor; Kutzschbach, Martin; Meixner, Anette; Kasemann, Simone; Lucassen, Friedrich; Loges, Anselm; Schultze, Dina;

2021 || GFZ Data Services

In the Western Tauern Window, Zillertal Alps (Austria/Italy), metasediments of a Mesozoic intra-montane basin ("Pfitsch-Mörchner basin"; Veselá and Lammerer, 2008) are exposed. The (me-ta)sediments were deposited on a Variscan basement, which comprises different types of meta-granitoids and their (Pre)-Variscan metamorphic country rocks. The chemical composition (major and trace elements) of these rocks is presented for 205 samples. In the metasediments (103 samples), we distinguish the following units (from base to top): metaconglomerate (14 samples) – mica schist (19) – carbonate-mica schist (9) – tourmaline gneiss (35) – lazulite quartzite (25) – marble (1). In the basement to the NW of the basin, we distinguish two different types of orthogneiss (both Zentralgneis of the Tux unit, in the local nomenclature two varieties Augenflasergneis and Schrammacher gneiss; 32 samples) and the roof pendant of these gneisses with serpentinite (10 samples), amphibolite, and paragneiss (no analyses presented).

In the SE of the basin we distinguish orthogneiss from the Zillertal branch of the Zentralgneis (7 samples), biotite-chlorite-plagioclase gneiss (9 samples), amphibolite, and (Pre-)Variscan graphitic micaschist with the local name Furtschagl schist (no analyses presented), and at the base of the basin sediments a schistose pyrite quartzite (31) with lenses of magnetite-chloritoide-staurolite-chlorite rich rocks (13 samples MCSC-lenses, interpreted as paleosol, Barrientos and Selverstone, 1987). From a subset of these samples (23 samples), rare earth elements were determined, and from another subset of 25 samples 11B/10B boron isotope ratios and whole rock B-contents. This extends a previously published data set of B isotope ratios in tourmaline from the metasedimen-tary unit (Berryman et al. 2017). For a test of stratigraphic correlation, typical rocks from the meta-conglomerate, the carbonate-mica schist, lazulite quartzite, and marble (one sample each) were analyzed for 87Sr/86Sr isotope ratios.

Originally assigned keywords

Corresponding MSL vocabulary keywords

MSL enriched keywords

MSL enriched sub domains
  • geochemistry
Source http://dx.doi.org/10.5880/fidgeo.2021.013
Source publisher GFZ Data Services
DOI 10.5880/fidgeo.2021.013
Authors
  • Franz, Gerhard
  • Department of Applied Geosciences, Technical University Berlin, Berlin, Germany;

  • Berryman, Eleanor
  • 0000-0002-3875-5826
  • CammetMINING of Natural Resources Canada, Ottawa, Ontario, Canada;

  • Kutzschbach, Martin
  • 0000-0002-2938-8147
  • Department of Applied Geosciences, Technical University Berlin, Berlin, Germany;

  • Meixner, Anette
  • Faculty of Geosciences MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany;

  • Kasemann, Simone
  • 0000-0002-6913-7748
  • Faculty of Geosciences MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany;

  • Lucassen, Friedrich
  • 0000-0002-2151-6116
  • Faculty of Geosciences MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany;

  • Loges, Anselm
  • 0000-0002-7575-999X
  • Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany;

  • Schultze, Dina
  • 0000-0002-2141-5155
  • Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany;
Contributors
  • Franz, Gerhard
  • ContactPerson
  • Department of Applied Geosciences, Technical University Berlin, Berlin, Germany;

  • Franz, Gerhard
  • ContactPerson
  • Department of Applied Geosciences, Technical University Berlin, Berlin, Germany;
References
  • Barrientos, X., & Selverstone, J. (1987). Metamorphosed soils as stratigraphic indicators in deformed terranes: An example from the Eastern Alps. Geology, 15(9), 841. https://doi.org/10.1130/0091-7613(1987)15<841:msasii>2.0.co;2
  • 10.1130/0091-7613(1987)15<841:msasii>2.0.co;2
  • Cites

  • Berryman, E. J., Kutzschbach, M., Trumbull, R. B., Meixner, A., van Hinsberg, V., Kasemann, S. A., & Franz, G. (2017). Tourmaline as a petrogenetic indicator in the Pfitsch Formation, Western Tauern Window, Eastern Alps. Lithos, 284–285, 138–155. https://doi.org/10.1016/j.lithos.2017.04.008
  • 10.1016/j.lithos.2017.04.008
  • Cites

  • Kasemann, S., Meixner, A., Rocholl, A., Vennemann, T., Rosner, M., Schmitt, A. K., & Wiedenbeck, M. (2001). Boron and Oxygen Isotope Composition of Certified Reference Materials NIST SRM 610/612 and Reference Materials JB‐2 and JR‐2. Geostandards Newsletter, 25(2–3), 405–416. Portico. https://doi.org/10.1111/j.1751-908x.2001.tb00615.x
  • 10.1111/j.1751-908X.2001.tb00615.x
  • Cites

  • Deniel, C., & Pin, C. (2001). Single-stage method for the simultaneous isolation of lead and strontium from silicate samples for isotopic measurements. Analytica Chimica Acta, 426(1), 95–103. https://doi.org/10.1016/s0003-2670(00)01185-5
  • 10.1016/S0003-2670(00)01185-5
  • Cites

  • Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., & Hofmann, A. W. (2005). GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards. Geostandards and Geoanalytical Research, 29(3), 333–338. https://doi.org/10.1111/j.1751-908x.2005.tb00904.x
  • 10.1111/j.1751-908X.2005.tb00904.x
  • Cites

  • McArthur, J. M., Howarth, R. J., & Shields, G. A. (2012). Strontium Isotope Stratigraphy. The Geologic Time Scale, 127–144. https://doi.org/10.1016/b978-0-444-59425-9.00007-x
  • 10.1016/B978-0-444-59425-9.00007-X
  • Cites

  • Cites

  • Romer, R. L., Meixner, A., & Hahne, K. (2014). Lithium and boron isotopic composition of sedimentary rocks — The role of source history and depositional environment: A 250Ma record from the Cadomian orogeny to the Variscan orogeny. Gondwana Research, 26(3–4), 1093–1110. https://doi.org/10.1016/j.gr.2013.08.015
  • 10.1016/j.gr.2013.08.015
  • Cites

  • Selverstone, J., & Hyatt, J. (2003). Chemical and physical responses to deformation in micaceous quartzites from the Tauern Window, Eastern Alps. Journal of Metamorphic Geology, 21(4), 335–345. Portico. https://doi.org/10.1046/j.1525-1314.2003.00444.x
  • 10.1046/j.1525-1314.2003.00444.x
  • Cites

  • SELVERSTONE, J., MORTEANI, G., & STAUDE, J. ‐M. (1991). Fluid channelling during ductile shearing: transformation of granodiorite into aluminous schist in the Tauern Window, Eastern Alps. Journal of Metamorphic Geology, 9(4), 419–431. Portico. https://doi.org/10.1111/j.1525-1314.1991.tb00536.x
  • 10.1111/j.1525-1314.1991.tb00536.x
  • Cites

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265. Portico. https://doi.org/10.1029/95rg00262
  • 10.1029/95RG00262
  • Cites
Contact
  • Franz, Gerhard
  • Department of Applied Geosciences, Technical University Berlin, Berlin, Germany;

  • Franz, Gerhard
  • Department of Applied Geosciences, Technical University Berlin, Berlin, Germany;
Citation Franz, G., Berryman, E., Kutzschbach, M., Meixner, A., Kasemann, S., Lucassen, F., Loges, A., & Schultze, D. (2021). Whole-rock geochemistry of rock units from the Pfitscher Joch area, Western Tauern Window [Data set]. GFZ Data Services. https://doi.org/10.5880/FIDGEO.2021.013