References |
- Wetterauer, K., Scherler, D., Anderson, L. S., & Wittmann, H. (2022). Temporal evolution of headwall erosion rates derived from cosmogenic nuclide concentrations in the medial moraines of Glacier d’Otemma, Switzerland. Earth Surface Processes and Landforms, 47(10), 2437–2454. Portico. https://doi.org/10.1002/esp.5386
- 10.1002/esp.5386
- IsSupplementTo
- Balco, G., Stone, J. O., Lifton, N. A., & Dunai, T. J. (2008). A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology, 3(3), 174–195. https://doi.org/10.1016/j.quageo.2007.12.001
- 10.1016/j.quageo.2007.12.001
- Cites
- Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., & Stone, J. (2016). Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology, 31, 188–198. https://doi.org/10.1016/j.quageo.2015.01.009
- 10.1016/j.quageo.2015.01.009
- Cites
- Braithwaite, R. J. (2015). From Doktor Kurowski’s Schneegrenze to our modern glacier equilibrium line altitude (ELA). The Cryosphere, 9(6), 2135–2148. https://doi.org/10.5194/tc-9-2135-2015
- 10.5194/tc-9-2135-2015
- Cites
- Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J., Melles, M., Staubwasser, M., Kuczewski, B., Richter, J., Radtke, U., von Blanckenburg, F., & Klein, M. (2013). CologneAMS, a dedicated center for accelerator mass spectrometry in Germany. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 294, 18–23. https://doi.org/10.1016/j.nimb.2012.04.030
- 10.1016/j.nimb.2012.04.030
- Cites
- Dunne, J., Elmore, D., & Muzikar, P. (1999). Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology, 27(1–2), 3–11. https://doi.org/10.1016/s0169-555x(98)00086-5
- 10.1016/S0169-555X(98)00086-5
- Cites
- Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., & Pandit, A. (2019). A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience, 12(3), 168–173. https://doi.org/10.1038/s41561-019-0300-3
- 10.1038/s41561-019-0300-3
- Cites
- Fischer, M., Huss, M., Barboux, C., & Hoelzle, M. (2014). The New Swiss Glacier Inventory SGI2010: Relevance of Using High-Resolution Source Data in Areas Dominated by Very Small Glaciers. Arctic, Antarctic, and Alpine Research, 46(4), 933–945. https://doi.org/10.1657/1938-4246-46.4.933
- 10.1657/1938-4246-46.4.933
- Cites
- GLAMOS-Glacier Monitoring Switzerland. (2019). Swiss Glacier Length Change (release 2019) [Data set]. GLAMOS - Glacier Monitoring Switzerland; Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, Switzerland; Department of Geosciences, University of Fribourg, Switzerland; Department of Geography, University of Zürich, Switzerland. https://doi.org/10.18750/LENGTHCHANGE.2019.R2019
- 10.18750/lengthchange.2019.r2019
- Cites
- GLAMOS-Glacier Monitoring Switzerland. (2019). Swiss Glacier Mass Balance (release 2019) [Data set]. GLAMOS - Glacier Monitoring Switzerland; Laboratory of Hydraulics, Hydrology and Glaciology (VAW), Swiss Federal Institute of Technology Zurich (ETH Zurich); Department of Geosciences, University of Fribourg, Switzerland; Department of Geography, University of Zürich, Switzerland. https://doi.org/10.18750/MASSBALANCE.2019.R2019
- 10.18750/massbalance.2019.r2019
- Cites
- GLAMOS-Glacier Monitoring Switzerland. (2019). Swiss Glacier Volume Change (release 2019) [Data set]. GLAMOS - Glacier Monitoring Switzerland; Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, Switzerland; Department of Geosciences, University of Fribourg, Switzerland; Department of Geography, University of Zürich, Switzerland. https://doi.org/10.18750/VOLUMECHANGE.2019.R2019
- 10.18750/volumechange.2019.r2019
- Cites
- Glen, J. W. (1952). Experiments on the Deformation of Ice. Journal of Glaciology, 2(12), 111–114. https://doi.org/10.3189/s0022143000034067
- 10.3189/S0022143000034067
- Cites
- The creep of polycrystalline ice. (1955). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 228(1175), 519–538. https://doi.org/10.1098/rspa.1955.0066
- 10.1098/rspa.1955.0066
- Cites
- Holzhauser, H., Magny, M., & Zumbuühl, H. J. (2005). Glacier and lake-level variations in west-central Europe over the last 3500 years. The Holocene, 15(6), 789–801. https://doi.org/10.1191/0959683605hl853ra
- 10.1191/0959683605hl853ra
- Cites
- Hubbard, A., Willis, I., Sharp, M., Mair, D., Nienow, P., Hubbard, B., & Blatter, H. (2000). Glacier mass-balance determination by remote sensing and high-resolution modelling. Journal of Glaciology, 46(154), 491–498. https://doi.org/10.3189/172756500781833016
- 10.3189/172756500781833016
- Cites
- Jonas, T., Marty, C., & Magnusson, J. (2009). Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. Journal of Hydrology, 378(1–2), 161–167. https://doi.org/10.1016/j.jhydrol.2009.09.021
- 10.1016/j.jhydrol.2009.09.021
- Cites
|