Unfortunately this page does not have a mobile or narrow screen view. Please switch to a desktop computer or increase the size of your browser. For tablets try flipping the screen.

Data Publication

Ring shearspan> test data of glass beads 40-70 µm used for analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam

Pohlenz, Andre | Rudolf, Michael | Kemnitz, Helga | Rosenau, Matthias

GFZ Data Services

(2020)

This dataset provides friction data from ring-shear tests (RST) on glass beads used in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam as an analogue for “weak” brittle layers in the crust or lithosphere (Ritter et al., 2016; Santimano et al., 2015; Contardo et al., 2011; Reiter et al., 2011; Hoth et al., 2007, 2006; Kenkmann et al., 2007; Deng et al., 2018) or in stick-slip experiments (Rudolf et al., 2019). The glass beads with a diameter of 40-70 µm have been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the glass beads are µP = 0.46, µD = 0.40 and µR = 0.44, respectively. Cohesion ranges between 33 and 42 Pa. A rate-weakening of ~3 % per ten-fold change in shear velocity v is evident.

Keywords


Originally assigned keywords
EPOS
Multiscale laboratories
analogue models of geologic processes
Cohesion
Friction coefficient
fracturing
detachment fault
fault
thrust fault
wrench fault
upper continental crustal setting
TECTONICS
CALIBRATIONVALIDATION
Force sensor
Python
Ringshear tester
tectonic and structural features

Corresponding MSL vocabulary keywords
cohesion
cohesion
friction coefficient
frictional deformation
friction coefficient
detachment fault
thrust fault
wrench fault
upper crust
tectonic plate boundary

MSL enriched keywords
Measured property
friction - controlled slip rate
cohesion
Measured property
friction - controlled slip rate
cohesion
friction coefficient
Inferred deformation behavior
deformation behaviour
frictional deformation
friction coefficient
tectonic deformation structure
tectonic fault
detachment fault
thrust fault
wrench fault
Earth's structure
Earth crust
upper crust
tectonic plate boundary
analogue modelling material
granular modelling material
synthetic granular material
glass microspheres
Apparatus
deformation testing
shear testing
rotary shear apparatus
Apparatus
characterization of modelling material
frictional property determination
rotary shear apparatus
rate and state friction (RSF) parameters
brittle deformation
rate and state friction (RSF) parameters
lithosphere

MSL original sub domains

analogue modelling of geologic processes

MSL enriched sub domains i

analogue modelling of geologic processes
rock and melt physics


Source publisher

GFZ Data Services


DOI

10.5880/GFZ.4.1.2020.006


Authors

Pohlenz, Andre

GFZ German Research Centre for Geosciences, Potsdam, Germany

Rudolf, Michael

0000-0002-5077-5221

GFZ German Research Centre for Geosciences, Potsdam, Germany

Kemnitz, Helga

GFZ German Research Centre for Geosciences, Potsdam, Germany

Rosenau, Matthias

0000-0003-1134-5381

GFZ German Research Centre for Geosciences, Potsdam, Germany


References

Contardo, X. J., Kukowski, N., & Cembrano, J. M. (2011). Material transfer and its influence on the formation of slope basins along the South Central Chilean convergent margin: Insights from scaled sandbox experiments. Tectonophysics, 513(1–4), 20–36. https://doi.org/10.1016/j.tecto.2011.09.016

10.1016/j.tecto.2011.09.016

Cites

Deng, B., Schönebeck, J., Warsitzka, M., &amp; Rosenau, M. (2018). <i>Ring-shear test data of different quartz sands and glass beads used for analogue experiments in the experimental laboratory of the Chengdu University of Technology (EPOS Transnational Access Call 2017)</i> (Version 1) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2018.003

10.5880/GFZ.4.1.2018.003

Cites

Hoth, S., Adam, J., Kukowski, N., & Oncken, O. (2006). Influence of erosion on the kinematics of bivergent orogens: Results from scaled sandbox simulations. Tectonics, Climate, and Landscape Evolution. https://doi.org/10.1130/2006.2398(12)

10.1130/2006.2398(12)

Cites

Hoth, S., Hoffmann‐Rothe, A., & Kukowski, N. (2007). Frontal accretion: An internal clock for bivergent wedge deformation and surface uplift. Journal of Geophysical Research: Solid Earth, 112(B6). Portico. https://doi.org/10.1029/2006jb004357

10.1029/2006JB004357

Cites

Kenkmann, T., Kiebach, F., Rosenau, M., Raschke, U., Pigowske, A., Mittelhaus, K., & Eue, D. (2007). Coupled effects of impact and orogeny: Is the marine Lockne crater, Sweden, pristine? Meteoritics &amp; Planetary Science, 42(11), 1995–2012. Portico. https://doi.org/10.1111/j.1945-5100.2007.tb00556.x

10.1111/j.1945-5100.2007.tb00556.x

Cites

Klinkmüller, M., Schreurs, G., Rosenau, M., & Kemnitz, H. (2016). Properties of granular analogue model materials: A community wide survey. Tectonophysics, 684, 23–38. https://doi.org/10.1016/j.tecto.2016.01.017

10.1016/j.tecto.2016.01.017

Cites

Reiter, K., Kukowski, N., & Ratschbacher, L. (2011). The interaction of two indenters in analogue experiments and implications for curved fold-and-thrust belts. Earth and Planetary Science Letters, 302(1–2), 132–146. https://doi.org/10.1016/j.epsl.2010.12.002

10.1016/j.epsl.2010.12.002

Cites

Ritter, M. C., Leever, K., Rosenau, M., & Oncken, O. (2016). Scaling the sandbox—Mechanical (dis) similarities of granular materials and brittle rock. Journal of Geophysical Research: Solid Earth, 121(9), 6863–6879. Portico. https://doi.org/10.1002/2016jb012915

10.1002/2016JB012915

Cites

Rudolf, M., Rosenau, M., Ziegenhagen, T., Ludwikowski, V., Schucht, T., Nagel, H., & Oncken, O. (2019). Smart Speed Imaging in Digital Image Correlation: Application to Seismotectonic Scale Modeling. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00248

10.3389/feart.2018.00248

Cites

Cites

Santimano, T., Rosenau, M., & Oncken, O. (2015). Intrinsic versus extrinsic variability of analogue sand-box experiments – Insights from statistical analysis of repeated accretionary sand wedge experiments. Journal of Structural Geology, 75, 80–100. https://doi.org/10.1016/j.jsg.2015.03.008

10.1016/j.jsg.2015.03.008

Cites

Schulze, D. (2003). Time‐ and Velocity‐Dependent Properties of Powders Effecting Slip‐Stick Oscillations. Chemical Engineering &amp; Technology, 26(10), 1047–1051. Portico. https://doi.org/10.1002/ceat.200303112

10.1002/ceat.200303112

Cites

Warsitzka, M., Ge, Z., Schönebeck, J.-M., Pohlenz, A., &amp; Kukowski, N. (2019). <i>Ring-shear test data of foam glass beads used for analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam and the Institute of Geosciences, Friedrich Schiller University Jena</i> [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2019.002

10.5880/GFZ.4.1.2019.002

Cites

Cites

References


Contact

Rosenau, Matthias

rosen@gfz-potsdam.de

GFZ German Research Centre for Geosciences, Potsdam, Germany


Citiation

Pohlenz, A., Rudolf, M., Kemnitz, H., & Rosenau, M. (2020). Ring shear test data of glass beads 40-70 µm used for analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2020.006