P³ - PetroPhysical Property Database

Bär, Kristian; Reinsch, Thomas; Bott, Judith;

2019 || GFZ Data Services

Petrophysical properties are key to populate numerical models of subsurface process simulations and for the interpretation of many geophysical exploration methods. They are characteristic for specific rock types and may vary considerably as a response to subsurface conditions (e.g. temperature and pressure). Hence, the quality of process simulations and geophysical data interpretation critically depend on the knowledge of in-situ physical properties that have been measured for a specific rock unit.
Inquiries for rock property values for a specific site might become a very time-consuming challenge given that such data are (1) spread across diverse publications and compilations, (2) heterogeneous in quality and (3) continuously being acquired in different laboratories worldwide. One important quality factor for the usability of measured petrophysical properties is the availability of corresponding metadata such as the sample location, petrography, stratigraphy, or the measuring method, conditions and authorship.
The open-access database presented here aims at providing easily accessible, peer-reviewed information on physical rock properties in one single compilation. As it has been developed within the scope of the EC funded project IMAGE (Integrated Methods for Advanced Geothermal Exploration, EU grant agreement No. 608553), the database mainly contains information relevant for geothermal exploration and reservoir characterization, namely hydraulic, thermophysical and mechanical properties and, in addition, electrical resistivity and magnetic susceptibility.
The uniqueness of this database emerges from its coverage and metadata structure. Each measured value is complemented by the corresponding sample location, petrographic description, chronostratigraphic age and original citation. The original stratigraphic and petrographic descriptions are transferred to standardized catalogues following a hierarchical structure ensuring intercomparability for statistical analysis. In addition, information on the experimental set-up (methods) and the measurement conditions are given for quality control. Thus, rock properties can directly be related to in-situ conditions to derive specific parameters relevant for modelling the subsurface or interpreting geophysical data.

Originally assigned keywords

Corresponding MSL vocabulary keywords

MSL enriched keywords

MSL enriched sub domains
  • rock and melt physics
  • paleomagnetism
Source http://dx.doi.org/10.5880/gfz.4.8.2019.p3
Source publisher GFZ Data Services
DOI 10.5880/gfz.4.8.2019.p3
Authors
  • Bär, Kristian
  • 0000-0003-4039-7148
  • Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Schnittspahnstraße 9, 64287 Darmstadt;

  • Reinsch, Thomas
  • 0000-0002-5803-9819
  • GFZ German Research Centre for Geosciences, Potsdam, Germany;

  • Bott, Judith
  • 0000-0002-2018-4754
  • GFZ German Research Centre for Geosciences, Potsdam, Germany;
Contributors
  • Bär, Kristian
  • ProjectLeader
  • 0000-0003-4039-7148
  • Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Schnittspahnstraße 9, 64287 Darmstadt;

  • Reinsch, Thomas
  • ProjectLeader
  • 0000-0002-5803-9819
  • GFZ German Research Centre for Geosciences, Potsdam, Germany;

  • Bott, Judith
  • ProjectLeader
  • 0000-0002-2018-4754
  • GFZ German Research Centre for Geosciences, Potsdam, Germany;

  • Strom, Alexander
  • DataCollector
  • 0000-0002-4300-6635
  • GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;

  • Knöll, Paul
  • DataCollector
  • 0000-0003-2118-3064
  • GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;

  • Mielke, Philipp
  • DataCollector
  • 0000-0003-0054-5521
  • Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;

  • Wiesner, Peter-Hans
  • DataCollector
  • Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;

  • Schmid, Rebekka
  • DataCollector
  • Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;

  • Krombach, Stina
  • DataCollector
  • Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;

  • Freymark, Jessica
  • DataCollector
  • GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;

  • Meeßen, Christian
  • DataCollector
  • 0000-0001-8151-8722
  • GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;

  • Reinosch, Eike
  • DataCollector
  • GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;

  • Dieck, Lisa
  • DataCollector
  • GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;

  • Lechel, Adrian
  • DataCollector
  • GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
References
  • Bär, K., Mielke, P., & Knorz, K. (2019). Petrographic Classification Table for the PetroPhysical Property Database P³ (Version 1.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.8.2019.P3.P
  • 10.5880/GFZ.4.8.2019.P3.p
  • HasPart

  • Bär, K., & Mielke, P. (2019). Stratigraphic Classification Table for the PetroPhysical Property Database P³ (Version 1.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.8.2019.P3.S
  • 10.5880/GFZ.4.8.2019.P3.s
  • HasPart

  • Abdulagatova, Z., Abdulagatov, I. M., & Emirov, V. N. (2009). Effect of temperature and pressure on the thermal conductivity of sandstone. International Journal of Rock Mechanics and Mining Sciences, 46(6), 1055–1071. https://doi.org/10.1016/j.ijrmms.2009.04.011
  • 10.1016/j.ijrmms.2009.04.011
  • Cites

  • Cites

  • Lachenbruch, A. H. (1968). Preliminary geothermal model of the Sierra Nevada. Journal of Geophysical Research, 73(22), 6977–6989. https://doi.org/10.1029/jb073i022p06977
  • 10.1029/JB073i022p06977
  • Cites

  • Esteban, L., Pimienta, L., Sarout, J., Piane, C. D., Haffen, S., Geraud, Y., & Timms, N. E. (2015). Study cases of thermal conductivity prediction from P-wave velocity and porosity. Geothermics, 53, 255–269. https://doi.org/10.1016/j.geothermics.2014.06.003
  • 10.1016/j.geothermics.2014.06.003
  • Cites

  • Fuchs, S., Schütz, F., Förster, H.-J., & Förster, A. (2013). Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: Correction charts and new conversion equations. Geothermics, 47, 40–52. https://doi.org/10.1016/j.geothermics.2013.02.002
  • 10.1016/j.geothermics.2013.02.002
  • Cites

  • Hartmann, A., Rath, V., & Clauser, C. (2005). Thermal conductivity from core and well log data. International Journal of Rock Mechanics and Mining Sciences, 42(7–8), 1042–1055. https://doi.org/10.1016/j.ijrmms.2005.05.015
  • 10.1016/j.ijrmms.2005.05.015
  • Cites

  • Pimienta, L., Sarout, J., Esteban, L., & Piane, C. D. (2014). Prediction of rocks thermal conductivity from elastic wave velocities, mineralogy and microstructure. Geophysical Journal International, 197(2), 860–874. https://doi.org/10.1093/gji/ggu034
  • 10.1093/gji/ggu034
  • Cites

  • Cites

  • Vilà, M., Fernández, M., & Jiménez-Munt, I. (2010). Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics, 490(3–4), 152–164. https://doi.org/10.1016/j.tecto.2010.05.003
  • 10.1016/j.tecto.2010.05.003
  • Cites

  • Adelinet, M., Fortin, J., Schubnel, A., & Guéguen, Y. (2013). Deformation modes in an Icelandic basalt: From brittle failure to localized deformation bands. Journal of Volcanology and Geothermal Research, 255, 15–25. https://doi.org/10.1016/j.jvolgeores.2013.01.011
  • 10.1016/j.jvolgeores.2013.01.011
  • Compiles

  • Alam, M. M., Fabricius, I. L., & Prasad, M. (2011). Permeability prediction in chalks. AAPG Bulletin, 95(11), 1991–2014. https://doi.org/10.1306/03011110172
  • 10.1306/03011110172
  • Compiles

  • Altherr, R., Holl, A., Hegner, E., Langer, C., & Kreuzer, H. (2000). High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1–3), 51–73. https://doi.org/10.1016/s0024-4937(99)00052-3
  • 10.1016/S0024-4937(99)00052-3
  • Compiles

  • Compiles

  • Ashwal, L. D., Morgan, P., Kelley, S. A., & Percival, J. A. (1987). Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements. Earth and Planetary Science Letters, 85(4), 439–450. https://doi.org/10.1016/0012-821x(87)90139-7
  • 10.1016/0012-821X(87)90139-7
  • Compiles

  • Compiles

  • Atal, B. S., Bhalla, N. S., Lall, Y., Mahadevan, T. M., & Udas, G. R. (1978). Padioactive Elemental Distribution in the Granjlite Terrains and Dearwar Schist Belis of Peninsular India. Developments in Precambrian Geology, 205–220. https://doi.org/10.1016/s0166-2635(08)70099-9
  • 10.1016/S0166-2635(08)70099-9
  • Compiles
Citation Bär, K., Reinsch, T., & Bott, J. (2019). P³ - PetroPhysical Property Database (Version 1.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.8.2019.P3
Geo location(s)
  • Rock Samples from World-Wide
Spatial coordinates
  • eLong 180
  • nLat 90
  • sLat -90
  • wLong -180