Contributors |
- Bär, Kristian
- ProjectLeader
- 0000-0003-4039-7148
- Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Schnittspahnstraße 9, 64287 Darmstadt;
- Reinsch, Thomas
- ProjectLeader
- 0000-0002-5803-9819
- GFZ German Research Centre for Geosciences, Potsdam, Germany;
- Bott, Judith
- ProjectLeader
- 0000-0002-2018-4754
- GFZ German Research Centre for Geosciences, Potsdam, Germany;
- Strom, Alexander
- DataCollector
- 0000-0002-4300-6635
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
- Knöll, Paul
- DataCollector
- 0000-0003-2118-3064
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
- Mielke, Philipp
- DataCollector
- 0000-0003-0054-5521
- Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;
- Wiesner, Peter-Hans
- DataCollector
- Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;
- Schmid, Rebekka
- DataCollector
- Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;
- Krombach, Stina
- DataCollector
- Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Darmstadt, Germany;
- Freymark, Jessica
- DataCollector
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
- Meeßen, Christian
- DataCollector
- 0000-0001-8151-8722
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
- Reinosch, Eike
- DataCollector
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
- Dieck, Lisa
- DataCollector
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
- Lechel, Adrian
- DataCollector
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam;
|
References |
- Bär, K., Mielke, P., & Knorz, K. (2019). Petrographic Classification Table for the PetroPhysical Property Database P³ (Version 1.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.8.2019.P3.P
- 10.5880/GFZ.4.8.2019.P3.p
- HasPart
- Bär, K., & Mielke, P. (2019). Stratigraphic Classification Table for the PetroPhysical Property Database P³ (Version 1.0) [Data set]. GFZ Data Services. https://doi.org/10.5880/GFZ.4.8.2019.P3.S
- 10.5880/GFZ.4.8.2019.P3.s
- HasPart
- Abdulagatova, Z., Abdulagatov, I. M., & Emirov, V. N. (2009). Effect of temperature and pressure on the thermal conductivity of sandstone. International Journal of Rock Mechanics and Mining Sciences, 46(6), 1055–1071. https://doi.org/10.1016/j.ijrmms.2009.04.011
- 10.1016/j.ijrmms.2009.04.011
- Cites
- Lachenbruch, A. H. (1968). Preliminary geothermal model of the Sierra Nevada. Journal of Geophysical Research, 73(22), 6977–6989. https://doi.org/10.1029/jb073i022p06977
- 10.1029/JB073i022p06977
- Cites
- Esteban, L., Pimienta, L., Sarout, J., Piane, C. D., Haffen, S., Geraud, Y., & Timms, N. E. (2015). Study cases of thermal conductivity prediction from P-wave velocity and porosity. Geothermics, 53, 255–269. https://doi.org/10.1016/j.geothermics.2014.06.003
- 10.1016/j.geothermics.2014.06.003
- Cites
- Fuchs, S., Schütz, F., Förster, H.-J., & Förster, A. (2013). Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: Correction charts and new conversion equations. Geothermics, 47, 40–52. https://doi.org/10.1016/j.geothermics.2013.02.002
- 10.1016/j.geothermics.2013.02.002
- Cites
- Hartmann, A., Rath, V., & Clauser, C. (2005). Thermal conductivity from core and well log data. International Journal of Rock Mechanics and Mining Sciences, 42(7–8), 1042–1055. https://doi.org/10.1016/j.ijrmms.2005.05.015
- 10.1016/j.ijrmms.2005.05.015
- Cites
- Pimienta, L., Sarout, J., Esteban, L., & Piane, C. D. (2014). Prediction of rocks thermal conductivity from elastic wave velocities, mineralogy and microstructure. Geophysical Journal International, 197(2), 860–874. https://doi.org/10.1093/gji/ggu034
- 10.1093/gji/ggu034
- Cites
- Vilà, M., Fernández, M., & Jiménez-Munt, I. (2010). Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics, 490(3–4), 152–164. https://doi.org/10.1016/j.tecto.2010.05.003
- 10.1016/j.tecto.2010.05.003
- Cites
- Adelinet, M., Fortin, J., Schubnel, A., & Guéguen, Y. (2013). Deformation modes in an Icelandic basalt: From brittle failure to localized deformation bands. Journal of Volcanology and Geothermal Research, 255, 15–25. https://doi.org/10.1016/j.jvolgeores.2013.01.011
- 10.1016/j.jvolgeores.2013.01.011
- Compiles
- Alam, M. M., Fabricius, I. L., & Prasad, M. (2011). Permeability prediction in chalks. AAPG Bulletin, 95(11), 1991–2014. https://doi.org/10.1306/03011110172
- 10.1306/03011110172
- Compiles
- Altherr, R., Holl, A., Hegner, E., Langer, C., & Kreuzer, H. (2000). High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1–3), 51–73. https://doi.org/10.1016/s0024-4937(99)00052-3
- 10.1016/S0024-4937(99)00052-3
- Compiles
- Ashwal, L. D., Morgan, P., Kelley, S. A., & Percival, J. A. (1987). Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat-producing elements. Earth and Planetary Science Letters, 85(4), 439–450. https://doi.org/10.1016/0012-821x(87)90139-7
- 10.1016/0012-821X(87)90139-7
- Compiles
- Atal, B. S., Bhalla, N. S., Lall, Y., Mahadevan, T. M., & Udas, G. R. (1978). Padioactive Elemental Distribution in the Granjlite Terrains and Dearwar Schist Belis of Peninsular India. Developments in Precambrian Geology, 205–220. https://doi.org/10.1016/s0166-2635(08)70099-9
- 10.1016/S0166-2635(08)70099-9
- Compiles
|